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ABSTRACT: 
A cadmium-doped-iron magnetically separable nanocatalyst accelerated the four-component 

synthesis of Acridine derivatives. This catalyst was successfully used for sterically hindered 

substrate in the Hantzsch reaction with excellent yields of Acridine derivatives.  A fascinating 

feature of this method is the affordable catalyst that is commercially available and has 

exceptional selectivity with neutral reaction conditions. 

KEYWORDS:  Tetrahydro Aryl Acridinone, Cd-doped-Fe, MNPs catalyst, N-heterocycle, 

eco-friendly. 

INTRODUCTION: 
The N-heterocycle-containing substances exhibit a range of physiological and biological 

functions.   Scientists have been giving close attention to it because of its use in biological 

studies over the past few years
ii
, medicinal

iii, iv
 and pharmacological activities

v
 such as 

cyclooxygenase-2 inhibitors-2 inhibitors against a glucosidase
vi

, and antihypertensive 

activity
vii, viii

, anti-inflammatory activity
ix

, myo relaxant activity of gastric fundus
x
. 

There have been findings of the numerous catalysts in the Hantzsch reaction such as chitosan 

nanoparticles
xi

, Zn-VCO3 hydrotalcite
 xii

 La2O3
xiii

, , sodium perchlorate
 xiv

, Yb(OTf)3
 xv

, 

Sc(OTf)3
 xvi

, ceric ammonium nitrate (CAN)
 xvii

, bismuth nitrate
 xviii

, Triton X-100
 xix

, 

samarium chloride
 xx

, Zr(H2PO4)2
 xxi

, ASA (alumina sulfuric acid)
 xxii

, PtNPs@GO
 xxiii

. SnCl4 

functionalized nano Fe as a heterogeneous catalyst with ultrasound
 xxiv

, and costly 

PdRuNi@GO
 xxv

. 

Researchers are enthusiastic about the development of magnetic catalysts due to the fact that 

they can be effectively separated by magnetic decantation following the reaction, improving 

reusability
 xxvi-xxviii

. Therefore, this idea holds great potential for the creation of sophisticated 

catalysts with higher selectivity and activity. Consequently, a novel class of nanocatalysts 

known as MNPs has surfaced
 xxvii, xxix

 in catalysis and medicine research areas, MNPs are 

among of the most promising materials.  MNPs of Fe are a major and efficient substitute for 

traditional heterogeneous catalytic supports because of their magnetic properties. These 
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characteristics make it easier to separate the catalyst after the reaction is complete. Nano-Fe 

are inexpensive, easily prepared, readily available, chemically stable, and have low toxicity. 

We developed a low-cost, reliable, and effective heterogeneous cadmium-doped-iron 

magnetic nanocatalyst that has been used in multicomponent synthesis with excellent activity 

as part of our ongoing research into environmentally friendly chemical processes for the 

synthesis of acridine derivatives. (Scheme I) 

CHO

NH3Ac

X

O

O

N
H

OO

Cd-Doped-Fe, Ethanol

O

O

+

X

Where X = H, electron donating or electron withdrawing group  
Scheme I: General synthesis of tetra hydro aryl acridine 

EXPERIMENTAL: 

The experiment was conducted using only AR-Grade chemicals from SD Fine Ltd., loba, etc. 

Using CDCl3 as the solvent, a 500 MHz machine was used to gather 1-H nuclear magnetic 

resonance (NMR) spectra. Chemical shifts were represented as parts per million (ppm) values 

in relation to the solvent.  On silica-coated aluminum plates, thin layer chromatography 

(TLC) was carried out and observed through an ultraviolet chamber. All solvents were used 

without purification unless otherwise indicated in the techniques below, and no steps were 

taken to remove ambient moisture. Glassware was dried in an oven at 90 °C for at least one 

hour before use.  With Shimadzu's muffle furnace, the catalyst was calcined at 500°C. 

GENERAL PROCEDURE: 

General Procedure for Synthesis of Acridinone Derivatives: 
A mixture of Aromatic aldehyde (1 m mol), Dimedone (2 m mol), and ammonium acetate  (1 

m mol), Cd-Doped-Fe MNPs (1.5 mg 1 % w/w) catalyst with ethanol as solvent was stirred 

magnetically at reflux and Thin-layer chromatography (TLC) was used to track the reaction's 

progress (45 min).  The reaction mixture was hot-filtered after 45 minutes and concentrated to 

¼ 
th

 volume followed by cooling to get tiny needle-shaped crystals which were collected by 

filtration. Following the standard workup, the product showed satisfactory spectral data such 

as IR, and 
1
H-NMR.   

Preparation of Cd-doped-Fe Nano Catalyst 
Preparation of Cd-doped-Fe MNPs catalyst done with the help of Iron Nitrate (1.596 gm.) as 

a source of Fe ion with Cadmium nitrate (0.332 mg) as a source of Cd ion and calculated 

amount of glycine along with L-Ascorbic Acid has taken in a minimum amount of de-ionized 

water. It is heated on a hot plate at 80°C in order to get homogenized gel, after the removal of 

excess water and further heating gel gets swallowed and releases brownish gases within 2-3 

seconds. Finally, the powder was calcined for four hours at 500°C in a muffle furnace. The 

resultant crystalline powder (1.43 gm.) of the Cd-doped-Fe MNPs catalyst has the average 

particle size (1.72 nm). Characterization of nanomaterial was done with FE-SEM, TEM, 

XRD, EDAX and IR. 

ANALYTICAL DISCUSSION: 

Entry 1 : - 3,4,6,7-tetrahydro-3,3,6,6-tetramethyl-9-(4-nitrophenyl) acridine 

1,8(2H,5H,9H,10H)-dione 

 IR ( KBr) (cm
-1

): 1600(Ar-C=C), 1490(-NO2), 1701(CO), 3200(-NH) singlet, 1195 

(Ar C-N stretching ) 
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 H
1
NMR : (500MHz, CDCl3):  δ = 1.0 (s, 12H, -CH3), 1.9 (s, 4H, -CH2) ; 2.4(s, 4H ,-

CH2CO); 4.2((s, 1H, -CH); 5.1(s,-NH); 7.4(d,2H,Ar-H); 8.1 (d, 2H, Ar-H 

 

Entry 3 : 3,4,6,7-tetrahydro-3,3,6,6-tetramethyl-9-(3-nitrophenyl)acridine-

1,8(2H,5H,9H,10H)-dione 

 IR ( KBr):  (cm
-1

): 1614(Ar-C=C), 1486(-NO2), 1697 (CO), 3291(-NH) singlet, 1170 

(Ar C-N stretching ) 

 H1NMR (500MHz, CDCl3):  δ = 1.0 (s, 12H, -CH3), 1.7 (s, 4H, -CH2) ; 2.3(s, 4H ,-

CH2CO); 4.0((s, 1H, -CH); 5.9(s,-NH); 7.2(dd,1H,Ar-H); 7.5(d,1H,Ar-H); 7.7 (d, 2H, Ar-H), 

 

Entry 5 : 9-(4-chlorophenyl)-3,4,6,7-tetrahydro-3,3,6,6-tetramethylacridine-

1,8(2H,5H,9H,10H)-dione 

 IR ( KBr):  (cm
-1

): 1608(Ar-C=C), 1489(-NO2), 1698(CO), 3278(-NH) singlet, 1168 

(Ar C-N stretching ) 

 H1NMR : (500MHz, CDCl3):  δ = 1.1 (s, 12H, -CH3), 2.0 (s, 4H, -CH2) ; 2.8(s, 4H 

,-CH2CO); 4.0((s, 1H, -NH); 5.4(s,-CH); 7.2(d,2H,Ar-H); 7.4 (d, 2H, Ar-H), 

Characterization of Catalyst 
The powder XRD patternv(fig.1) of the sol-gel-prepared Cd-doped-Fe Nanocatalyst showed 

that a single-phase product was produced and the crystallite size (1.72 nm) was determined 

from the broadening diffraction peak using Scherrer's equation. 

 

 
Fig.1 -XRD pattern Of Cd-Doped-Fe Nano Catalyst 

 

FTIR spectra (fig.2) of Cd-doped-Fe Nano catalyst was in the range of 450-4000 cm
-1

 wave 

number which shows characteristic peak at 535 cm
-1 

described Fe-O stretching band which 

show the formation of Fe-O and peaks at 859 cm
−1

 revealed the formation of Cd-O with the 

peaks at 1434 cm
-1

 respect to asymmetric bending vibration of CO, absence of broad peak in 

the range of 3200-3600 shows catalyst is stable to moisture. 

 



 

 

V. D. Gharat
 
et al. / Heterocyclic Letters Vol. 14| No.4|873-883|Aug-Oct|2024 

 

876 

 

 
Fig.1  IR of Cd-Doped-Fe Nano Catalyst 

 

The Energy Dispersive X-ray (Fig.3)of the developed catalyst reveals the existence of 

Cadmium, Iron, uniform distribution of cadmium and Iron nanoparticles in lattices, and 

Cadmium doping into Iron lattices with a percentage composition of Cadmium 16.8% and 

Iron 83.2. The expectation was 84% Iron and 16% Cadmium based on the charged quantity of 

Iron nitrate (5 gm) and Cadmium nitrate (1 gm), which matched the outcome of the EDAX 

analysis. 

 

  

 

 

A B 

 

Fig.3 EDAX of Cd-Doped-Fe MNPs 

 

 

As shown in Fig.4 the particle distributions, surface morphology, and particle shape of 

manufactured Cd-Doped-Fe nanoparticles were determined using the field emission scanning 

electron microscopy technique. According to the FE-SEM image, the following doping was 

accomplished with the porous fibrous material with a large surface area. This is because 

Cadmium (0.16 nm) is greater in size than Iron (0.126 nm). Doped nanoparticles have a 

smaller average size and a greater metal surface area. The FE-SEM image also depicts 

nanoparticles in doped particles ranging in size from 10 to 60 nm.   
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Fig.4- FE-SEM of Cd-Doped-Fe MNPs at different magnificence 

 

Figure 5 depicts TEM images of doped materials. The crystalline Cd-doped-Fe nanoparticles 

are shown in Figure 5a. The average particle size of cadmium-doped-Fe nanoparticles was 

found to be 10-50 nm. This value corresponds to the average particle size determined by 

XRD and FE-SEM analysis. Because Cd doping reduces particle size while increasing 

particle surface area, more particles become involved in the chemical process. Figure 5b 

depicts the SAED pattern of cd-doped Fe nanoparticles. The SAED pattern with brilliant 

circular rings corresponds to the creation of the FCC structure of metallic Cd doped Fe with 

nanosize particles. 

 

 
 

 

 

Fig.5- TEM of Cd-Doped-Fe MNPs at different magnificence 

 

RESULTS AND DISCUSSION: 

As a preliminary step towards optimizing the reaction conditions, we conducted a reaction 

involving para-nitrobenzaldehyde, 2-mole equivalent dimedone, and ammonium 

acetate(Scheme 1).On the model reaction, the impact on several reaction parameters 
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including catalyst dopant composition, catalyst loading, solvent, temperature, and time was 

examined. 

 

Table -1 Screening the reaction parameters for the synthesis of diethyl 3,4,6,7-tetrahydro-

3,3,6,6-tetramethyl-9-(4-nitrophenyl)acridine-1,8(2H,5H,9H,10H)-dione 

O

O

CHO

NH3Ac+

+ 2

Cd-Doped-Fe, Ethanol

NO2

The standard model reaction

N
H

OO

NO2

 

Entry 
% of Cd 

(w/w) 

catalyst 

(mg) 
solvent 

Temp. 

°C 

Time 

(min) 

Yield
b
 

(% ) 

1 8 1.5 

C2H5O

H Reflux 60 70 

2 24 1.5 

C2H5O

H Reflux 35 85 

3 16 1 

C2H5O

H Reflux 45 75 

4 16 2 

C2H5O

H Reflux 30 92 

5 16 2.5 

C2H5O

H Reflux 35 92 

6 16 1.5 THf 65 60 60 

7 16 1.5 CH2Cl2 40 60 82 

8 16 1.5 CHCl3 Reflux 60 75 

9 16 1.5 Et2O Reflux 60 35 

10 16 1.5 DMF 80 60 72 

11 16 1.5 

C2H5O

H Reflux 25 92 

12 16 1.5 

C2H5O

H 25 120 55 

13 00 1.5 

C2H5O

H 25 120 75 
a 
Condition; para nitro benzaldehyde (1 mmol), Ethyl aceto acetate (2 mmol), Solvent (2 ml), 

ammonium acetate (1.2 mmol) 
b
 Isolated pure yield 

 

According to experimental results summarized in Table 1, the reaction was carried out in the 

presence of ethanol at reflux with a catalyst loading of 1.5 mg, and this combination 

produced the best results in terms of reaction time and yield of the product diethyl 1,4-

dihydro-2,6-dimethyl-4-(4-nitrophenyl)pyridine-3,5-dicarboxylate (table 1, entry 11). The 

yield remained unchanged even after raising the catalyst concentration further.  Furthermore, 

we performed the reaction with various dopant Cadmium composition percentages and found 

that a 16% w/w composition gave an outstanding yield. The reaction without dopant gives 

comparatively less yield (table 1, entry 13) 
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Table- 2. . Synthesis of Acridine derivatives in the presence of Cd-Doped-Fe MNPs catalyst 

with various aldehydes and 1,3-Dimidone
a
 

 

Entry Aldehyde 1,3- diketone product Time (min) m.p. Yield
c
 

1
c
 

CHO

NO2  

O

O

2 mmol  
N
H

OO

NO2

 

45 

 

92 

2 

CHO

NO2

 
O

O

2 mmol  N
H

OO
NO2

 

90 

 

80 

3
 c
 

CHO

NO2  
O

O

2 mmol  N
H

OO

NO2

 

60 

 

90 

4 

CHO

OH

 
O

O

2 mmol  N
H

OO
OH

 

90 

 

75 

5
 c
 

CHO

Cl  

O

O

2 mmol  
N
H

OO

Cl

 

60 

 

78 

6 

CHO

OCH3  

O

O

2 mmol  
N
H

OO

OCH3

 

90 

 

75 

7 

CHO

OH  

O

O

2 mmol  
N
H

OO

OH

 

90 

 

75 
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8 

CHO

Br  

O

O

2 mmol  
N
H

OO

Br

 

60 

 

80 

9 

CHO

 
O

O

2 mmol  N
H

OO

 

60 

 

85 

10 

CHO

CH3  

O

O

2 mmol  N
H

OO

 

90 

 

75 

An aromatic aldehyde(1 mmol) and Ammonium acetate (1.1 mmol) reacted with dimedone (2 

mol) in ethanol at 

  reflux. 
b 

Isolated yields 
c
 All products were identified by their IR and 

1
H NMR spectra 

 

We prepared a wide range of Acridine derivatives by using a variety of aromatic aldehydes 

and using ideal reaction conditions. The results are summarized in Table 2. Aromatic 

aldehyde and ammonium acetate were treated with 2 mmol Dimedone (table -2 entry 1-10) in 

the presence of ethanol at reflux gives excellent yields. Sterically hindered reactants give 

considerable yield. (Table 2. Entry 2, 4) 

CONCLUSION: 

In conclusion, this paper presents an approach for synthesizing acridine derivatives using Cd-

doped Fe MNPs as a powerful catalyst. The advantages include affordability, simplicity, 

catalyst recovery, and in-situ recrystallization of products without chromatographic 

purification in the reactions with high yields. 

Recyclability of Catalyst 
The easy recovery of the Cd-doped-Fe Nanocatalyst in model reaction, which results from its 

magnetically separable heterogeneity, has proven its recyclability. Up to eight cycles, the 

catalyst was shown to produce a product with a tiny reduction in catalytic activity (Figure 6). 
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Fig. 6-Recyclability of catalyst 
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