EVALUATION OF (E)-2-CHLOROVINYLSULFONES AS NOVEL CLASS OF CYTOTOXIC AGENTS AND HIGHLY (E)-STEREOSELECTIVE ADDITION OF N-, S-AND Se-NUCLEOPHILES TO (E)-2-CHLOROVINYLSULFONES UNDER PHASE TRANSFER CATALYSIS CONDITIONS

Julija Visnevska, Sergey Belyakov, Irina Shestakova, Anita Gulbe, Elina Jaschenko, Edgars Abele

Latvian Institute of Organic Synthesis, 21 Aizkraukles Street, Riga, LV-1006, Latvia, E-mail: abele@osi.lv

ABSTRACT:

Novel phase transfer catalytic (PTC) method for the conjugate addition-elimination of N-, S- and Se-nucleophiles to (E)-2-chlorovinylsulfones has been developed. Products were isolated in yields up to 98%. (*E*)-2-Chlorovinylsulfones exhibit very high cytotoxicity against MG-22A and HT-1080 cancer cell lines.

Keywords: 2-chlorovinylsulfones; conjugate addition; phase transfer catalytic system; toxicity; cytotoxicity.

INTRODUCTION

Functionalized unsaturated sulfur containing compounds have been investigated as intermediates in organic synthesis ¹⁻³. Among them 2-chlorovinylsulfones have been studied extensively ⁴⁻⁶. 2-Chlorovinylsulfones are typically prepared by oxidation of 2-chlorovinyl sulfides with H_2O_2 in AcOH⁷, m-chloroperbenzoic acid (m-CPBA) in CH₂Cl₂⁸ or by elimination of HCl from 2,2-dichlorovinylsulfones in the presence of Et₃N⁹. Some works were dedicated to conjugate addition-elimination of N- or S-nucleophiles to 2-chlorovinylsulfones. Thus, interaction of 2-chlorovinylsulfones with mercaptanes in the system NaHCO₃ / EtOH ¹⁰ or with sodium salts of mercaptanes¹¹ leads to addition products. In some cases triethylamine in diethylether was excellent system for the conjugate addition of mercaptanes to 2- 12). chlorovinylsulfones (for example, 2-chlorovinyl-trifuoromethylsulfone 2-Chlorovinylsulfones react also with nitrogen nucleophiles forming addition products too ¹³⁻¹⁵. However, stereoselectivity in most of above mentioned articles was low or not investigated at all. Beside this conjugate addition of N-, S- and Se-nucleophiles to 2-chlorovinylsulfones under phase transfer catalysis conditions hasn't been investigated till now.

Stereoselective conjugate addition of N-, S- and Se-nucleophiles to (E)-2-chlorovinylsulfones in good preparative yields is the problem that is solved in the present report. Beside this cytotoxicity of simple aryl and hetaryl substituted 2-chlorovinylsulfones hasn't been

investigated till now. Therefore the second aim is investigation of toxicity and cytotoxicity of (E)-2-chlorovinylsulfones and (E)-2-aziridinylvinylsulfones.

RESULTS AND DISCUSSION

We obtained *E*-2-chlorovinyl sulfones **1-4** by oxidation of an intermediate 2-chlorovinyl sulfides **1-4b** with m-CPBA, prepared from corresponding thiols in the system ClCH₂CHCl₂ / K₂CO₃ (then KOH) / KI / 18-crown-6 / PhMe.

 $R = Ph(1); R = PhCH_2$ (2); R = 2-benzothiazolyl (3); R = 2-pyridyl (4)

We have developed novel PTC method for the *E*-stereoselective addition of N-, S- and Se-nucleophiles to (*E*)-2-chlorovinylthioarenes 1, 2. Experiments show, that catalytic system solid $Cs_2CO_3 / 18$ -crown-6 / toluene was the best for the *E*-stereoselective synthesis of products **5-14** (Method B) (see Table 1). Under these conditions desired products were isolated in 6-91% yields. The synthesis of desired products **5-14** was carried out using triethylamine catalyzed synthesis too (Method A, see Experimental). Using above method alkenes **5-14** were isolated in 27-55% yields (see Tables 1 and 2). Thus, PTC method for the conjugate addition of N-nucleophiles to 2-chlorovinylsulfones in the most of the cases was more efficient than classical triethylamine catalyzed method.

Method B: Cs₂CO₃ / 18-crown-6 / PhMe

The crystal structure of the furan derivative **11** was established by X-ray structure analysis. The molecular structure of sulfone **11** with atomic numbering scheme is presented in Fig. 1. The molecule consists of three planar fragments – phenyl ring, furan cycle and CH₂-S-CH=CH fragment. The values of C(2)-C(6)-S(7)-C(8) and C(8)-C(9)-C(10)-C(13) torsion angles

are equal 62.9(4) and $-96.7(4)^{\circ}$, respectively. The structure has been deposited with the Cambridge Crystallographic Data Centre (deposition number is CCDC 721533).

Fig. 1. Molecular structure of compound 11.

Table 1. Conjugate addition of N-, S and Se-nucleophiles to 2-chlorovinylsulfones 1 and 2 (methods A and B, see Experimental)

(included 1 and 2, see Experimental)									
Starting		Method A	-	Method B					
sulfone	Product	Reaction	Yield, %	Reaction	Yield, %				
		time, h		time, h					
1		24	38	40	60				
2		24	36	64	18				
1		24	36	20	91				
2	S S S S S S S S S S S S S S S S S S S	24	45	20	80				
1		28	38	63	20				
	У								

2		24	55	15	6
1		36	27	70	13
2		38	34	65	22
1	Solution Sector 13	24	51	24	20
2	No Se Se	24	28	24	27

Cytotoxic activity of (*E*)-2-chlorovinylsulfones **1-4** and (*E*)-2-aziridinylvinylsulfones **5** and **6** was tested *in vitro* on the two monolayer tumor cell lines: MG-22A and HT-1080. Toxicity of chlorovinylsulfones **1-4** (LD₅₀ 108-442 mg/kg) and 2-aziridinylvinylsulfones **5** and **6** (LD₅₀ 628 and 782 mg/kg, harmful) was detected on the mouse normal fibroblasts. Preliminary analyses of the structure-activity relationship for the cytotoxic action clearly indicate the strong influence of chlorine or aziridine substituent on cytotoxic effects *in vitro*. Thus, chlorovinylsulfones **1**, **2** and **4** exhibit very high cytotoxicity (IC₅₀ values were ~1 µg/mL for the human fibrosarcoma HT–1080 cell and mouse hepatosarcoma MG-22A cell lines). Aziridine derivatives **5** and **6** were considerably less active on the above cancer cell lines (Table 3).

		1 1		
MS, m/z (I, %)	$^{1}\mathrm{H}$ 1	NMR, δ ppm	¹³ C NMR, δ p	pm
209 (M ⁺ , 7), 144 (40), 2.06	6 (s, 4H, aziridine protons),	31.00 (a	ziridine),
130 (42, 117 (78), 7	7 5.81	and 7.50 (both d, 2H, $J =$	110.02,	127.05,
(100), 68 (50), 51 (92), 14 I	Hz, CH=CH), 7.49-7.55 and	131.10,	133.50,
41 (82)	7.84	4-7.88 (both m, 5H, Ph)	136.30, 152.9	8
223 (M ⁺ , 3), 158 (7), 1.98	3 (s, 4H, aziridine protons),	27.59 (a	ziridine),
132 (31), 91 (100), 6	4.21	(m, 2H, CH ₂), 5.57 and	28.54 (<u>C</u> H ₂),	109.98,
(15)	7.11	1 (both d, 2H, J = 14 Hz,	126.41,	128.67,
	CH	=CH), 7.36 (m, 5H, Ph)	128.98,	130.55,
			130.87	
	MS, m/z (I, %) 209 (M ⁺ , 7), 144 (40 130 (42, 117 (78), 7 (100), 68 (50), 51 (92 41 (82) 223 (M ⁺ , 3), 158 (7 132 (31), 91 (100), 6 (15)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MS, m/z (I, %) 1 H NMR, δ ppm209 (M ⁺ , 7), 144 (40),2.06 (s, 4H, aziridine protons),130 (42, 117 (78), 775.81 and 7.50 (both d, 2H, J =(100), 68 (50), 51 (92),14 Hz, CH=CH), 7.49-7.55 and41 (82)7.84-7.88 (both m, 5H, Ph)223 (M ⁺ , 3), 158 (7),1.98 (s, 4H, aziridine protons),132 (31), 91 (100), 654.21 (m, 2H, CH ₂), 5.57 and(15)7.11 (both d, 2H, J = 14 Hz,CH=CH), 7.36 (m, 5H, Ph)	MS, m/z (I, %) 1 H NMR, δ ppm 13 C NMR, δ p209 (M ⁺ , 7), 144 (40), 130 (42, 117 (78), 772.06 (s, 4H, aziridine protons), 5.81 and 7.50 (both d, 2H, J = 110.02, 14 Hz, CH=CH), 7.49-7.55 and 131.10, 131.10, 136.30, 152.9110.02, 131.10, 136.30, 152.9223 (M ⁺ , 3), 158 (7), 132 (31), 91 (100), 651.98 (s, 4H, aziridine protons), 4.21 (m, 2H, CH ₂), 5.57 and 7.11 (both d, 2H, J = 14 Hz, CH=CH), 7.36 (m, 5H, Ph)28.54 (<u>C</u> H ₂), 128.98, 130.87

	1 12					
Table 2. MS,	¹ H and ¹³	C NMR sj	pectroscop	oic data of p	products	5 – 14.

7	$253 (M^+ 20) 210$	3 10 and 3 60 (both t 8H I -	56.17 and 66.01
/	(20) $(101, 29), 210(20)$ $(120, (27), 112$	5.19 and 5.09 (both t, 811, $3 = 5$	(morpholino) = 110.18
	(20), 130 (27), 112 (88) 82 (100) 55 (45)	(both d $I = 12$ Hz CH=CH)	(morphonic), 110.18, 125.32 126.43
	(88), 82 (100), 55 (45), 12 (42)	7 30 7 40 and $7 83 7 86$ (both	125.52, 120.43, 126.42, 120.43
	42 (42)	7.39-7.49 and $7.83-7.80$ (both m 5H Dh)	120.42 129.07, 132.00
0	$267 (M^+ 10) 202 (8)$	111, 511, F11	52 10 and 66 64
ð	207 (M, 10), 203 (8), 176 (100) 128 (15)	5.08 and 5.05 (both t, 8H, J –	52.10 and 60.04
	1/0 (100), 128 (13), 111 (17) 01 (72) 65	SHZ , CH_2CH_2), 4.17 (S, 2H, CH) 4.78 and 6.75 (both d L)	(1101 pnonne), 05.22
	(111 (17), 91 (72), 03 (25) 55 (15) 41 (20)	CH_2), 4.78 and 6.75 (both d, J -12 Hz CH=CH) 7.24 (m 5H	$(\underline{C}\Pi_2), 109.89, 125.04, 129.20$
	(23), 33 (13), 41 (20)	-12 HZ, CH–CH), 7.34 (m, 5H,	128.20, 128.31, 128.31
0	$200 (M^+ < 1) = 149$	$\frac{P(I)}{2.00} (a 2II (CII)) = 6.18 \text{ and}$	150.51, 150.85
9	290 (M, <1), 148	5.99 (S, 2H, CH ₂), 0.18 and 7.54 (both d 2U I = 14 Uz	$30.33 (CH_2), 109.39,$
	(25), 91 (100), 65 (9)	7.54 (both d, 2H, J -14 HZ,	122.00, 120.83, 120.83, 120.71
		CH=CH), 7.50-7.59 and 7.69-	120./1 $128.22,$ 120.27 120.01
		7.83 (both m, 10H, Ph)	128.37, 128.81, 128.81
			128.95, 132.66,
10	$204(0.0^{+}, 1), 214(7)$		134.12
10	304 (M, <1), 214 (/),	3.94 and 4.14 (both s, 4H,	$36.//(SCH_2), 61.96,$
	148 (14), 91 (100), 65	CH_2 , 5.97 and 7.18 (both d,	110.01,
	(11)	2H, J = 14 Hz, CH = CH), /.16-	128.05,128.27,
		7.40 (m, 10H, Ph)	128.97, 128.64,
			128.97, 130.82,
			130.83, 131.13,
11			134.66
11	$139 (M^{-}PhSO_2, 23),$	4.01 (s, 2H, CH_2), 6.27 and	25.94 (<u>C</u> H ₂), 108.37,
	81 (100), 53 (11)	7.73 (both d, 2H, J = 14 Hz,	109.99, 110.66,
		CH=CH), 6.24, 6.29 and 7.33	125.39, 127.32,
		(all m, 3H, furan ring protons),	129.24, 133.41,
		7.51-7.59 and 7.82-7.85 (both	138.11, 141.20,
		m, 5H, Ph)	149.97
12	139 (M $-$ PhCH ₂ SO ₂ ,	3.95 and 4.19 (both s, CH ₂),	29.15 (<u>C</u> H ₂), 61.91
	25), 91 (PhCH ₂ , 70),	6.09 and 7.40 (both d, 2H, J =	(<u>C</u> H ₂), 108.88, 110.76,
	81 (100), 65 (10), 53	16 Hz, CH=CH), 6.21 and 6.34	118.97, 128.23,
	(12)	(both m, 2H, furan ring	128.72, 128.78,
		protons), 7.25-7.37 (m, 6H, Ph	130.85, 142.87,
		and furan ring proton)	147.26, 148.41
13	324 (M ⁺ , 30), 234 (7),	6.19 and 8.21 (both d, $2H$, $J =$	125.35, 127.13,
	182 (56), 157 (61),	16 Hz, CH=CH), 7.37-7.60 and	127.38, 129.20,
	125 (9), 102 (23), 77	7.80-7.84 (both m, 10H, Ph)	129.59, 130.03,
	(100), 51 (47)		130.81, 133.14,
			135.10, 140.63
14	338 (M ⁺ , 5), 248 (7),	4.14 (s, 2H, CH ₂), 5.92 and	61.65 (<u>C</u> H ₂), 123.65
	157 (15), 91 (100), 65	7.90 (both d, 2H, $J = 16$ Hz,	124.97, 128.10
	(16)	CH=CH), 7.29-7.49 (m, 10H,	128.67, 129.65,
		Ph)	130.00, 130.78,
			135.28, 145.96

Table	3.	In	vitro	cell	cytotoxicity	(IC ₅₀	(µg/ml)	and	intracellular	NO-generation
(nmolx	(10^2)	200	μl, NC) 100	%CV, concen	tration	100 µg/n	nl) of	compounds 1-(5.

Compound	3T3, LD-	HT-1080		0 /	MG-22/	Ι	
	₅₀ , mg/kg	IC ₅₀ , CV	IC ₅₀ , MTT	NO 100%CV	IC ₅₀ , CV	IC ₅₀ , MTT	NO 100%CV
	162	<1	<1	150	<1	<1	75
	108	<1	<1	250	1	1	250
	442	10	10	60	15	27	100
	265	2	1	60	1	1	18
	628	17	13	67	20	14	57
	782	28	17	75	26	28	33

EXPERIMENTAL

¹H and ¹³C NMR spectra were recorded on a Varian 200 Mercury spectrometer using CDCl₃ as a solvent and HMDSO as the internal standard. Mass spectra were registered on a GC-MS HP 6890 (70 eV) apparatus using a glass column packed with 5% OV-101 / Chromosorb W-HP (80-100 mesh, 1.2 m x 3 mm). Thiols, phenylselenide and morpholine, 18-crown-6 (Acros) were used without purification. Triethylamine and toluene were distilled over CaH₂ prior using. 2-Chlorovinylsulfones 1¹⁶, 2^{16, 17}, 3¹⁸ and 4¹⁸ were prepared as described in articles.

Typical procedure for the synthesis of (*E*)-2-chlorovinylsulfones 1-4. 1,1,2-Trichloroethane (4.1 ml, 44 mmol) was added under stirring to the mixture of thiol (20 mmol), K_2CO_3 (8.28 g, 60 mmol), KI (6.64 g, 40 mmol) and 18-crown-6 (528 mg, 2 mmol) in 25 ml of xylene. Reaction mixture was refluxed for 2 hours, cooled and filtered. The solvent was evaporated under reduced pressure to obtain 2-(2,2-dichloroethanesulfanyl)hetarenes 1-4a. Finely powdered KOH (2.24 g, 20 mmol) in 25 ml of toluene were added to reaction mixtures containing 2-(2,2-dichloroethanesulfanyl)hetarenes 1-4a. Reaction mixture was stirred 45 minutes (GC-MS control) at room temperature, filtered and evaporated. The residue was purified by column

chromatography using hexane : toluene (2 : 1) as eluent to obtain intermediate 2chlorovinylsulfides **1-4b**. *m*-Chloroperoxybenzoic acid (15.35 g, 88.9 mmol) was added portionwise under stirring to the solution of (*E*)-2-chlorovinylsulfides **1-4b** (29.8 mmol) in 50 ml of dry dichloromethane. Reaction mixture was stirred overnight at room temperature and filtered. The filtrate was concentrated at reduced pressure. The residue was purified by column chromatography using hexane : toluene (2 : 1) as eluent. The properties of obtained 2chlorovinylsulfones **1**, ¹⁶ **2** ¹⁶, **3** ¹⁸ and **4** ¹⁸ were described in articles.

General method of synthesis for the conjugate addition of N-, S- and S-nucleophiles to 2chlorovinylsulfones 1 and 2 in the presence of triethylamine (Method A). N-, S- or Senucleophile (1.1 mmol) was added under stirring to the solution of 2-chlorovinylsulfone 1 or 2 (1 mmol) and triethylamine (1.1 mmol) in 3 ml of dry toluene. Reaction mixture was stirred at room temperature (TLC control). The solvent was evaporated under reduced pressure. The residue was purified by column chromatography using hexane: ethyl acetate in different mixtures as eluent. The reaction conditions and spectroscopical data see Tables 1 and 2.

General method of synthesis for the conjugate addition of N-, S- and S-nucleophiles to 2chlorovinylsulfones 1 and 2 under PTC conditions (Method B). N-, S- or Se-nucleophile (0.9 mmol) was added under stirring to the mixture of 1-chlorovinylsulfones 1 or 2 (1 mmol), Cs_2CO_3 (0.65 g, 2 mmol), and 18-crown-6 (26 mg, 0.1 mmol) in 2 ml of dry toluene. Filtered and the solvent was evaporated under reduced pressure. The residue was purified by column chromatography using hexane : ethyl acetate in different mixtures as eluent. The reaction conditions and spectroscopical data see Tables 1 and 2.

X-Ray crystallographic analysis

A single crystal diffractometer "Bruker-Nonius KappaCCD" (MoK_{α}-radiation, $\lambda = 0.71073$ Å) was used for data collection. Crystals of the compound are orthorhombic, space group $P2_12_12_1$ (No 19). Lattice parameters are a = 8.5931(3), b = 9.9710(3), c = 15.5512(7) Å; V = 1332.45(9) Å³, Z = 4, F(000) = 584, $\mu = 0.396$ mm⁻¹, $D_{calc} = 1.398$ g/cm³, $2\theta_{max} = 55.0^{\circ}$. A total of 5816 reflection intensities were collected at room temperature using φ scan technique. The structure was solved using direct method ¹⁹. For structure refinement, 1371 independent reflections with $|F|^2 > 3\sigma(I)$ were used. The structure refinement was carried out with the *maXus* complex of programs ²⁰. The final *R*-factor is 0.042.

In vitro cytotoxicity assay

Monolayer tumor cell lines – HT-1080 (human connective tissue fibrosarcoma), MG-22A (mouse hepatosarcoma), 3T3 (mouse Swiss Albino embryo fibroblasts) - were cultured in standard medium (Dulbecco's modified Eagle's medium; DMEM) without an indicator ("Sigma") and supplemented with 10% heat-inactivated fetal bovine serum ("Sigma"). Tumor cell lines were taken from the ATCC. After the ampoule had thawed, cells from one to four passages were used. Three concentrations of test compound: 1, 10 and 100 μ g ml⁻¹ was used and was tested. About (2-5) x10⁴ cells ml⁻¹ (depending on the nature of the line) were placed in 96-well plates immediately after compounds were added to the wells; the volume of each plate was 200 μ l. The control cells without test compounds were cultured on separate plate. The plates were incubated for 72h, 37°C, 5% CO₂. The number of surviving cells was determined using tri(4-dimethylaminophenyl)methyl chloride (crystal violet: CV) or 3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyltetrazolinium bromide (MTT) ^{21,22}. The quantity on the control plate was taken in calculations for 100%. The concentration of NO was determined according to the Griess method (by NO₂ level in the culture medium). Sodium nitrite standard solution was used for the calibration curve. LD₅₀ was tested according "Alternative Toxicological Methods" ²³. The program Graph Pad Prism[®] 3.0 was used for calculations ($r\Box$ < 0.05.).

REFERENCES

- 1. A. Ogawa and T. Hirao, Rev. Heteroatom Chem. 18, 1 (1998).
- 2. D.J. Procter, J. Chem. Soc., Perkin Trans. 1, 641 (1999).
- 3. D.J. Procter, Perkin 1, 835 (2000).
- 4. V. Padmavathi, M.R. Sarma, A. Padmaja and D.B. Reddy, J. Heterocycl. Chem. 40, 933 (2003).
- 5. L.M. Litvinenko, V.V. Kravchenko and A.F. Kostenko, Russ. J. Org. Chem. 18, 1324 (1982).
- 6. A.B. Padwa, W.H. Bullock, A.D. Dyszlewski, S.W. McCombie, B.B. Shankar and A.K. Ganguly, J. Org. Chem. 56, 3556 (1991).
- 7. G.A. Russell, P. Ngoviwatchai, H.I. Tashtoush, A. Pla-Dalmau and R.K. Khanna, J. Am. Chem. Soc. 110, 3530 (1988).
- 8. V. Farina and S.I. Hauck, J. Org. Chem. 56, 4317 (1991).
- 9. D.B. Reddy, N.C. Babu, V. Padmavathi and R.P. Sumathi, Synthesis 491 (1999).
- 10. F. Montanari, Gazz. Chim. Ital. 86, 735 (1956).
- 11. G. Modena and P.E. Todesco, Gazz. Chim. Ital. 89, 866 (1959).
- 12. A.M. Aleksandrov and L.M. Yagupol'skii, Russ. J. Org. Chem. 6, 242 (1970).
- 13. (a) G. Modena, P.E. Todesco and S. Tonti, Gazz. Chim. Ital. 89, 878 (1959); (b) M. Shimagaki, H. Koshiji and T. Oishi, Phosphorus, Sulfur and Silicon and the Related Elements, 16, 45 (1983).
- 14. S. Maiorana, D. Pocar and P.D. Croce, Tetrahedron Lett. 6043 (1966).
- 15. P.G. Dul'nev, Chem. Heterocycl. Comp. 15, 727 (1979).
- 16. E. Ābele and J. Višņevska, Latvian J. Chem., 263 (2008).
- 17. J. Višņevska and E. Ābele, Latvian J. Chem. 50, 22 (2011).
- 18. J. Višņevska, S. Belyakov and E. Ābele, Lett. Org. Chem. 9, 250 (2012).
- 19. A. Altomare, M. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, A. Guagliardi, A. Moliterni and R. Spagna, J. Appl. Cryst. 32, 115 (1999).
- 20. S. Mackay, C. J. Gilmore, C. Edwards, N. Stewart, K. Shankland. maXus Computer Program for the Solution and Refinement of Crystal Structures. Bruker Nonius, The Netherlands, MacScience, Japan & The University of Glasgow (1999).
- 21. D.J. Fast, R.C. Lynch and R.W. Leu, J. Leuckocyt. Biol. 52, 255 (1992).
- 22. P.J. Freshney, Culture of Animal Cells (A Manual of Basic Technique), Wiley-Liss, New York, 1994, pp. 296-297.
- 23. http://iccvam.niehs.nih.gov/methods/invidocs/guidance/iv_guide.htm [2004.01.10]

Received on April 23, 2012.