PALLADIUM CATALYZED MONO- AND DIARYLATION OF 2-METHYLQUINOLINES

Edgars Abele, Ramona Ābele, Ļena Golomba

Latvian Institute of Organic Synthesis, 21 Aizkraukles Street, Riga, LV-1006, Latvia, E-mail: abele@osi.lv

ABSTRACT:

Reactions of 2-methylquinolines with aryl iodides in the system $Pd(OAc)_2$ (5 mol.%)/ dppb (1,4-bis(diphenylphosphino)butane) (10 mol.%) / *t*-BuOK (1.3 eq.) in toluene afforded mono- and diarylated products in yields up to 44 %.

Keywords: Palladium catalyst, 2-methylquinolines, 2-benzyl-6-methoxy-quinoline, 6-Methoxy-2-(diphenylmethyl)quinoline, 6-methoxy-2-(4-methoxybenzyl)quinoline

INTRODUCTION

Benzylquinolines and diarylmethylquinolines are of interest as valuable intermediates in organic synthesis. Usually benzylquinolines were obtained by reaction of benzyl sodium with quinoline ¹, benzyl magnesium bromide with quinoline ², methylquinoline with chlorobenzene ³ or by homolytic benzylation of quinoline with toluene derivatives ⁴.

Diarylmethylquinolines were obtained from quinoline and benzene in the presence of dehydrating agent (for example, H_2SO_4)⁵ or from quinoline aldehyde and benzene in the presence of triflic acid⁶.

Palladium catalyzed arylation reactions of ketones, amides and related nucleophiles were recently described in some reviews ⁷⁻⁹. The best catalytic systems for arylation of ketone enolates were found to be $Pd_2(dba)_3 / BINAP / t-BuONa ^{10}, Pd_2(dba)_3 / Tol-BINAP / t-BuONa / THF ^{11}, Pd(OAc)_2 / Xantphos / t-BuONa or K_3PO_4 ^{12}, Pd(OAc)_2 / PPh_3 / Cs_2CO_3 / DMF ^{13}, Pd(OAc)_2 / RR_3 (R= alkyl, aryl) / Cs_2CO_3 ^{14} and (imidazol-2-ylidene)palladium acetate / t-BuONa / dioxane ^{15}. Palladium catalyzed arylation of nitriles ^{16} and sulfones ^{17} were described too. Recently was described simple arylation of 8-methylquinoline with 4-bromo-1-iodobenzene to corresponding benzylquinoline in the system Pd(OAc)_2 / AgOAc / AcOH ^{18}. However, only mono-arylated products were obtained in the above system. Recently we reported our first results in Pd-catalyzed mono- and diarylation of methylquinolines. ^{19} Now we are presenting a novel Pd-catalyzed method of synthesis of benzylquinolines and diarylmethylquinolines.$

RESULTS AND DISCUSSION

We have developed a new and simple palladium catalyzed arylation method of methylquinolines. The influence of catalyst, base and solvent was studied in the arylation

reaction of 2-methylquinoline (1) with iodobenzene (2 eq.). Interestingly, the system $Pd(OAc)_2$ (5 mol.%)/ dppb (1,4-bis(diphenylphosphino)butane) (10 mol.%) / t-BuOK (1.3 eq.) in toluene was found to be the most active for the diarylation of compound 1. In this system compound 3 was obtained in the 41% yield, along with mono-arylated product 2 (17%). Increase in the amount of t-BuOK to 2.6 equiv. and using P(o-Tol)₃ as ligand diminishes the yields of products 2 and 3. The systems $Pd(OAc)_2$ (5 mol.%) / CuI (10 mol.%) / t-BuOK / toluene, $Pd(OAc)_2$ (5 mol.%)/ dppb (10 mol.%) / t-BuOK (1.3 eq.) / CsOH (1.3 eq.) / 18-crown-6 (10 mol.%) / toluene and $Pd(PPh_3)_4$ (5mol.%) / t-BuOK (1.3 eq.) / toluene were essentially inactive in the arylation of compound 1 (Table 1.).

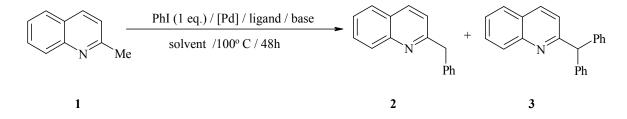
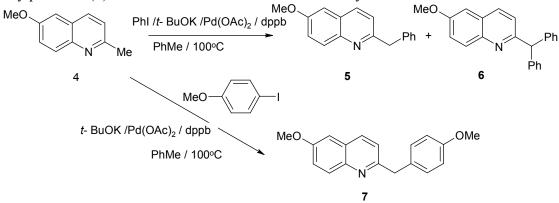



Table 1. Palladium catalyzed arylation of 2-methylquinoline (1) with 2 equivalent of PhI at 100°C for 48 h.

100 C 101 40 II.					
Catalyst	Ligand	Base	Solvent	Yield of 2 , % (GC-MS	Yield of 3 , % (GC-MS
				data)	data)
$Pd(OAc)_2$	Dppb	t-BuOK	Toluene	17	41
(5 mol.%)	(10 mol.%)	(1.3 eq.)			
Pd(OAc) ₂	Dppb	t-BuOK	Toluene	26	0
(2.5 mol.%)	(5 mol.%)	(1.3 eq.)			
$Pd(OAc)_2$	Dppb	t-BuOK	Toluene	13	5
(5 mol.%)	(10mol.%)	(2.6 eq.)			
$Pd(OAc)_2$	Dppb	t-BuOK	DMF	23	0
(5 mol.%)	(10 mol.%)	(1.3 eq.)			
$Pd(OAc)_2$	Dppb	CsOH (1.3 eq.) +	Toluene	0	0
(5 mol.%)	(10 mol.%)	18-crown-6			
		(10 mol.%)			
$Pd(OAc)_2$ (5	P(o-Tol) ₃	t-BuOK	Toluene	17	7
mol.%)	(10mol.%)	(1.3 eq.)			
$Pd(OAc)_2$	Dppb	t-BuOK	Toluene	2	0
(5 mol.%)+	(10mol.%)	(1.3 eq.)			
CuI					
(10 mol.					
%)					
Pd(PPh ₃) ₄	-	t-BuOK	Toluene	Traces	0
(5 mol.%)		(1.3 eq.)			

The catalytic system system $Pd(OAc)_2$ (5 mol.%)/ dppb (1,4-bis(diphenylphosphino)butane) (10 mol.%) / *t*-BuOK (1.3 eq.) in toluene, as the most active, was used in the arylation of 2-methyl-6-methoxyquinoline (4) with iodobenzene or 1-iodo-4-methoxybenzene.

Arylation of quinoline 4, having electrondonating group in the position 6, with iodobenzene in above system leads to mixture of mono- (5) (yield 12%) and diarylated product (6) (yield 13%). However, reaction of compound 4 with 1-iodo-4-methoxybenzene was selective so that 6-methoxy-2-(4-methoxybenzyl)quinoline (7) was isolated in 44 % yield as single product. Diarylation of compound 4 in this case did not occurred due to deactivation of methylene group in the compound 7 by methoxy group in *para*-position.

Thus, palladium catalyzed arylation of methylquinolines is a simple method for the synthesis of benzylquinolines and diarylmethylquinolines which otherwise are difficult to obtain.

EXPERIMENTAL SECTION

¹H spectra were recorded on a Varian Mercury BB 400 MHz in CDCl₃ using HMDS as internal standard. Mass spectra were registered on a GC-MS HP 6890 (70 eV).

General procedure for the arylation of 2-methylquinoline with iodobenzene in the presence of palladium catalyst

2-Methylquinoline (0.14 ml, 1 mmol), iodobenzene (0.22 ml, 2 mmol) and base (see Table 1) were added to stirred solution of palladium catalyst and ligand (see Table 1) in dry toluene (1.25 ml) in a Pierce reacti-vial (5 ml) under argon atmosphere. The mixture was stirred at 100° C (GC-MS control) for 48 h, filtered and the solvent was evaporated under reduced pressure. The residue was purificated by column chromatography on silica gel (eluent: toluene: ethyl acetate 10:1) to obtain desired products 2 and 3^{5,6} as colorless oils (see Table 1).

General procedure for the arylation of 2-methyl-6-methoxyquinoline (4) with iodobenzene or 1-iodo-4-methoxybenzene in the presence of palladium catalyst.

2-Methyl-6-methoxyquinoline (4)(0.224 g, 1 mmol), aryl iodide (2 mmol) and *t*-BuOK (0.146 g, 1.3 mmol) were added to stirred solution of Pd(OAc)₂ (0.011 g, 0.05 mmol) and 1,4-bis(diphenylphosphino)butane (dppb) (0.043 g, 0.1 mmol) in dry toluene (1.25 ml) in a Pierce reacti-vial (5 ml) under argon atmosphere. The mixture was stirred at 100°C (GC-MS control) for 48 h, filtered and the solvent was evaporated under reduced pressure. The residue was purificated by column chromatography on silica gel (eluent: toluene: ethyl acetate 10:1) to obtain desired products 5-7 as colourless oils.

The properties of obtained products were as follows:

2-Benzyl-6-methoxy-quinoline (5). Yield 12 %. ¹H NMR δ (ppm): 3.91 (s, 3H, Me), 4.30 (s, 2H, CH₂), 7.02-7.38 and 7.90-8.00 (both m, 10H, Ph and quinoline ring protons). MS: *m/z* (%): 249 (M⁺, 58), 248 (100), 234 (10), 205 (21).

6-Methoxy-2-(diphenylmethyl)quinoline (6). Yield 13 %. ¹H NMR δ (ppm): 3.91 (s, 3H, Me), 5.87 (s, 1H, CH), 7.03-7.31 and 7.93-7.97 (both m, 15H, Ph and quinoline ring protons). MS: *m/z* (%): 326 (M⁺, 15), 324 (100), 281 (16), 204 (26), 165 (33), 152 (13).

6-Methoxy-2-(4-methoxybenzyl)quinoline (7). Yield 44 %.¹H NMR δ (ppm): 3.76 (s, 3H, MeO in Ph ring) 3.91 (s, 3H, MeO in quinoline ring), 4.23 (s, 2H, CH₂), 6.81-7.37 and 7.89-7.99 (both m, 9H, Ph and quinoline ring protons). MS: *m/z* (%): 279 (M⁺, 98), 278 (100), 264 (66), 221 (11), 192 (12), 121 (14).

ACKNOWLEDGEMENTS

This work was supported by the project of ESF Foundation of Latvia (Project Nr. 2009/0197/1DP/1.1.1.2.0/09/APIA/VIAA/014).

REFERENCES

- 1. H. Gilman, J.A. Beel, J. Amer. Chem. Soc. 73, 774 (1951).
- 2. E. Bergman, J. Rosenthal, J. Prakt. Chem. 135, 267 (1932).
- 3. R.E. Wrigh, F.W. Bergstrom, J. Org. Chem. 1, 179 (1936).
- 4. A. Clerici, O. Porta, Canad. J. Chem. 58, 2117 (1980).
- 5. W. Mathes, A. Wolf, US Pat. 3042678 (1962); Chem. Abstr. 57, 15082e (1962).
- 6. D.A. Klumpp, A. Jones, S. Lau, S. de Leon, Synthesis 1117 (2000).
- 7. D. Prim, J.-M. Campagne, D. Joseph, B. Andrioletti, Tetrahedron 58, 2041 (2002).
- 8. C. Scolastino, P. Giovanni, Chemtracts 12, 498 (1999).
- 9. C. Bolm, J. P. Hildebrand, K. Muniz, N. Hermanns, Angew. Chem. Int. Ed. 40, 3284 (2001).
- 10. J. Ahman, J.P. Wolfe, M.V. Troutman, M. Palucki, S.L. Buchwald, J. Amer. Chem. Soc. 120, 1918 (1998).
- 11. M. Palucki, S.L. Buchwald, J. Amer. Chem. Soc. 119, 11108 (1997).
- 12. J. M. Fox, X. Huang, A. Chieffi, S. L. Buchwald, J. Amer. Chem. Soc. 122, 1360 (2000).
- 13. F. Churruca, R. SanMartin, M. Carril, I. Tellitu, E. Dominguez, Tetrahedron 60, 2393 (2004).
- 14. T. Satoh, M. Miura, M. Nomura, J. Organomet. Chem. 653, 161 (2002).
- 15. R. Singh, S.P. Nolan, J. Organomet. Chem. 690, 5832 (2005).
- A. Klapars, J.H. Waldman, K.R. Campos, M.S. Jensen, M. McLaughlin, J.Y.L. Chung, R.J. Cvetovich, C. Chen, J. Org. Chem. 70, 10186 (2005).
- 17. A.V. Mitin, A.N. Kashin, I.P. Beletskaya, Russ. J. Org. Chem. 40, 802 (2004).
- 18. D. Shabashov, O. Daugulis, Org. Lett. 7, 3657 (2005).
- 19. L. Golomba, E. Abele, R. Abele, P. Arsenyan, Pre OMCOS 13, Paris, 15-16 July, 2005, Recent advances in organometallic chemistry and applied catalysis, Abstracts, P 18.

Recieived on October, 27, 2011.