A NEW PATHWAY FOR THE PREPARATION OF 3-SUBSTITUTED 1,2,4OXADIAZEPINES BY INTRAMOLECULAR PALLADIUM CATALYZED CYCLIZATION OF (E)-O-(2-IODOPHENYLMETHYL) AMIDOXIMES

Edgars Abele, Kira Rubina, Lena Golomba, Ramona Abele
Latvian Institute of Organic Synthesis, 21 Aizkraukles Street, Riga, LV-1006, Latvia, E-mail: abele@osi.lv

Abstract

: A simple synthesis of novel class of heterocyclic compounds - 3-substituted 1,2,4-oxadiazepines from corresponding (E)-O-(2-iodophenylmethyl)amidoximes in the system $\mathrm{Pd}_{2}(\mathrm{dba})_{3} /$ Xantphos / solid $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ / dioxane has been developed.

Keywords: Palladium catalyst, coupling, amidoximes, o-iodobenzyl bromide, phase transfer catalysis, 3 -substituted 1,2,4-oxadiazepines

INTRODUCTION

Seven-membered heterocyclic motifs are usually present in the wide range of biologically active molecules ${ }^{1}$. Wide range of recent chemical review literature was dedicated to synthesis and transformation of seven membered rings ${ }^{2-6}$. Among these works two chapters on the chemistry of seven-membered ring with three heteroatoms at the positions 1,2 and 4 was published ${ }^{6,7}$. There is direct preparation of 3,5,7-trisubstituted 4,7-dihydro-1,2,4-oxadiazepines based on the two step method in the system $\mathrm{MeONa} / \mathrm{KOH} / \mathrm{MeOH}$ starting from enones among the methods described in literature. ${ }^{8}$ Beside this intramolecular condensation of methyl 2-chloro-2(phenylcarbamoylimidoylaminooxycyclopropyl)acetate in the presence of NaH in acetonitrile leading to 9 -chloro-6-phenyl-5,7-diaza-4-oxaspiro[2,6]non-5-en-8-one was recently also presented. ${ }^{9}$ However, there are no general methods for the synthesis of benzo fused 3substituted 1,2,4-oxadiazepines.

RESULTS AND DISCUSSION

Herein we report a novel and simple palladium catalyzed method for the preparation of 3substituted 1,2,4-oxadiazepines from corresponding amidoximes and o-iodobenzyl bromide. At first, synthesis of compounds $\mathbf{9 - 1 2}$ were carried out using two step methods. The first step included selective amidoxime 1-4 O-alkylation ${ }^{10}$ in the phase transfer catalytic system o iodobenzyl bromide/ solid KOH / 18-crown-6 / PhMe (Scheme 1, see Experimental Section). Unfortunately, that dialkylation of amidoxime 13 with o-iodobenzyl bromide in the presence of solid $\mathrm{KOH} / 18$-crown- 6 at $50^{\circ} \mathrm{C}$ leads to desired product 14 in low yield and selectivity. Therefore, solid KOH was substituted for solid $\mathrm{K}_{2} \mathrm{CO}_{3}$ in this case. O-Alkyl derivatives 5-8 and 14 were isolated by column chromatography in 14-63 \% yields.

The second step of reaction step is $\mathrm{Pd}(0)$-catalyzed cyclization of an intermediate (E)-O-(2-iodophenylmethyl)amidoximes 5-8. The high activity of Pd-catalysts in N -arylation of amidoxime O -alkyl derivatives was demonstrated in article ${ }^{11}$. However, palladium catalyzed intramolecular cyclization of oxime O-ethers was not studied till now. Beside this some articles were dedicated to palladium catalyzed N -arylation of amides with aryl halides ${ }^{12}$. Our previously experiments show that catalytic system (E-oxime ether $\mathbf{5 - 8}$ - solid dry $\mathrm{Cs}_{2} \mathrm{CO}_{3} / \mathrm{Pd}_{2}(\mathrm{dba})_{3} /$ Xantphos in dry dioxane was best for the preparation of oxadiazepines 9-12. Products $\mathbf{9 - 1 2}$ were isolated in 20-49 \% yields (see Experimental Section).

Pyridine derivative $\mathbf{1 4}$ readily undergo palladium catalyzed cyclization leading to product 15 isolated in 16% yield (Scheme 2).

1, 5, $9 \mathrm{R}=\mathrm{PhCH}_{2} ; \mathbf{2 , 6}, 10($ 2-benzothiazolyl $)\left(\mathrm{CH}_{2}\right)_{3} ; \mathbf{3}, 7,11$ (2-benzothiazolyl) $\left(\mathrm{CH}_{2}\right)_{5}$;
4, 8, $12 \mathrm{R}=\operatorname{PhSe}\left(\mathrm{CH}_{2}\right)_{3}$
Scheme 1

15
Scheme 2

EXPERIMENTAL SECTION

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian Mercury BB 400 MHz in CDCl_{3} using HMDSO as internal standard. LC-MS spectra were recorded on Alliance Waters 2695 instrument and Waters 3100 mass detector. Oximes 1-4, 13 were prepared as described in article ${ }^{13}$. $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, o-iodobenzyl bromide, $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$, Xantphos and 18-crown-6 (Acros and Aldrich) were used without additional purification.

Typical procedure for the preparation of (E)-O-(2-iodophenylmethyl)oximes 5-8 and oxime ether 14. Solid $\mathrm{KOH}(0.45 \mathrm{~g}, 8 \mathrm{mmol})$ (for the preparation of compound $\mathbf{1 4}$ solid $\mathrm{K}_{2} \mathrm{CO}_{3}$ (6 equivalents) was used; reaction temperature $100^{\circ} \mathrm{C}$) was added to solution of oxime 1-4 (2 mmol), 18-crown-6 ($0.053 \mathrm{~g}, 0.2 \mathrm{mmol}$) and (o-iodo)benzyl bromide (2 mmol) in dry toluene (8 $\mathrm{ml})$ and the reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 12 h . Then reaction mixture was filtered and solvent was removed under reduced pressure and crude residue was chromatographed on silica using ethyl acetate: hexane in different mixtures as eluent.

Typical procedure for the preparation 2-substituted 4,5-dihydro-1Hbenzo[d][4,1,3]oxadiazepines $\mathbf{9 - 1 2}$ from oxime ethers 5-8. Mixture of oxime ether 5-8 (0.488 $\mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.0089 \mathrm{~g}, 0.00976 \mathrm{mmol})$, Xantphos $(0.0056 \mathrm{~g}, 0.00976 \mathrm{mmol})$, anhydrous $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.222 \mathrm{~g}, 0.683 \mathrm{mmol})$ in dry dioxane $(2 \mathrm{ml})$ was heated at $100^{\circ} \mathrm{C}$ for 12 h in glass reactor under argon. Reaction mixture was diluted with ethyl acetate (30 ml), filtered and solvent was removed under reduced pressure and crude residue was chromatographed on silica using ethyl acetate: hexane in different mixtures as eluent. Compound $\mathbf{1 5}$ was prepared from iodide $\mathbf{1 4}$ using double amounts of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$, Xanthpos and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$. Spectroscopic data of obtained compounds were as followed:
N-(2-Iodobenzyloxy)-benzamidine (5). Yield 55%. LC-MS, $367 \quad\left(\mathrm{M}^{+}+1\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 3.37\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.44\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 4.97\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.90-$ 6.92, 7.16-7.32 and 7.74-7.76 (all m, 9H, Ph). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 37.58$, $78.67,97.94,127.18,128.03,128.04,128.80,128.80,129.23,129.24,135.85,139.17,140.57$, 153.26.

4-(Benzothiazol-2-ylsulfanyl)-N-(2-iodobenzyloxy)-butyramidine (6). Yield 14 \%. LC-MS, $484\left(\mathrm{M}^{+}+1\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$: 2.07-2.15 (m, 2H, $\mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.33(\mathrm{t}$, $\left.2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CCH}_{2}\right), 3.35\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{SCH}_{2}\right), 4.81\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 4.99\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right)$, 6.94-6.97, 7.27-7.43 and 7.74-7.85 (all m, $8 \mathrm{H}, \mathrm{Ph}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 26.61$, 29.85, 32.39, 78.60, 98.07, 120.97, 131.38, 124.24, 126.03, 128.03, 129.12, 129.33, 135.19, 139.16, 140.61, 153.11, 153.23, 166.79.

6-(Benzothiazol-2-ylsulfanyl)- \boldsymbol{N}-(2-iodobenzyloxy)-hexanamidine (7). Yield 43 \%. LC-MS, $512\left(\mathrm{M}^{+}+1\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 1.53-1.65\left(\mathrm{~m}, 6 \mathrm{H}^{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3}\right), 2.15$ (t, 2H, J = $7.2 \mathrm{~Hz}, \mathrm{CCH}_{2}$), $3.31\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{SCH}_{2}\right.$), $4.59\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 4.97(\mathrm{~s}, 2 \mathrm{H}$, OCH_{2}), 6.94-6.98, 7.27-7.42 and 7.74-7.87 (all m, $8 \mathrm{H}, \mathrm{Ph}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 26.28,27.91,28.80,31.02,33.28,78.52,97.98,120.88,121.42,124.08,125.99,127.98$, 129.11, 129.33, 135.14, 139.13, 140.66, 154.00, 155.31, 167.07.
\boldsymbol{N}-(2-Iodobenzyloxy)-4-phenylselanyl-butyramidine (8). Yield 63\%. LC-MS, 501 $\left(\mathrm{M}^{+}+1\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 1.94\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.45(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}$, CCH_{2}), $2.89\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{SeCH}_{2}\right), 4.54\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 4.97\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.94$ 7.24-7.48 and 7.81 (all m, $9 \mathrm{H}, \mathrm{Ph}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 25.64,26.28,30.18,77.62$, 97.11, 125.91, 127.07, 128.12, 128.12, 128.12, 128.93, 131.61, 138.22, 139.66, 152.26.

6-Benzyl-5,9-dihydro-8-oxa-5,7-diazabenzocycloheptene (9). Yield 49\%. LC-MS, 239 $\left(\mathrm{M}^{+}+1\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 3.59\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.86\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 5.98$ (bs,
$1 \mathrm{H}, \mathrm{NH}$), 6.48-6.50, 6.75-7.02 and 7.18-7.29 (all m, 9H, Ph). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 39.84 .77 .31,117.38,121.37,127.60,128.20,128.85,128.86,129.17,130.00,133.30$, 139.55, 155.70.

6-[3-(Benzothiazol-2-ylsulfanyl)-propyl]-5,9-dihydro-8-oxa-5,7-diazabenzocycloheptene (10). Yield 20% LC-MS, $356\left(\mathrm{M}^{+}+1\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 2.27(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.55\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CCH}_{2}\right), 3.50\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{SCH}_{2}\right), 4.91\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 6.81-7.16, 7.25-7.45 and 7.73-7.78 (all m, $8 \mathrm{H}, \mathrm{Ph}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 28.25$, $31.88,32.30,77.20,117.54,121.04,121.32,124.42,126.16,127.07,127.67,128.29,130.22$, 135.23, 139.81, 152.88, 156.68, 167.14.

6-[5-(Benzothiazol-2-ylsulfanyl)-pentyl]-5,9-dihydro-8-oxa-5,7-diaza-benzocycloheptene (11). Yield 38 \%. LC-MS, $384\left(\mathrm{M}^{+}+1\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 1.71-1.90$ $\left(\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3}\right), 2.34\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{CCH}_{2}\right), 3.34\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{SCH}_{2}\right), 4.90(\mathrm{~s}, 2 \mathrm{H}$, CH_{2}), 6.37 (bs, $\left.1 \mathrm{H}, \mathrm{NH}\right), 6.74-7.15,7.25-7.42$ and 7.73-7.86 (all m, 8H, Ph). ${ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 26.93,27.80,28.72,33.20,33.58,77.20,117.35,120.95,121.24,121.37$, $124.18,126.04,127.60,128.25,130.06,135.15,139.78,153.21,156.95,167.06$.

6-(3-Phenylselanyl-propyl)-5,9-dihydro-8-oxa-4,7-diazabenzocycloheptene(12). Yield 29% LC-MS, $345\left(\mathrm{M}^{+}+1\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 2.03-2.09\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.46$ $\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{CCH}_{2}\right), 3.02\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{SeCH}_{2}\right), 4.86\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.15(\mathrm{bs}, 1 \mathrm{H}$, NH), 6.65-6.68, 6.85-7.30 and 7.48-7.50 (all m, 9H, Ph). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 26.78,27.57,33.48,77.31,117.35,121.35,127.09,127.63,128.26,129.18,129.50$, 130.04, 132.73, 139.56, 156.17.

2,6-\{Bis-[\boldsymbol{N}-(2-iodo-benzyloxy)amidinyl]\}-pyridine (14). Yield 55\%. LC-MS, 628 $\left(\mathrm{M}^{+}+1\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 5.09\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 5.51\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.90-$ 6.92, 7.19-7.53 and 7.74-7.78 (all m, 8H, Ph), 7.58 (t, 1H, J = 7.6 Hz, H-4), 7.89 (d, 2H, J = 7.6 $\mathrm{Hz}, \mathrm{H}-3$ and $\mathrm{H}-5$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm): 79.49, 98.11, 121.65, 128.12, 129.40, 136.89, 139.22, 140.41, 147.88, 149.91, 171.11.

6-[6-(5,9-Dihydro-8-oxa-5,7-diaza-benzocyclohepten-6-yl)-pyridin-2-yl]-5,9-dihydro-8-oxa-5,7-diaza-benzocycloheptene (15). Yield 16\%. GC-MS, $374\left(\mathrm{M}^{+}+1\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 4.97\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.88-7.29$ and $7.80-7.90$ (both $\mathrm{m}, 8 \mathrm{H}, \mathrm{Ph}$), 7.72-7.74 (m, $1 \mathrm{H}, \mathrm{H}-4$), 8.14 (m, 2H, H-3 and H-5), 8.60 (bs, 2H, NH). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm): 77.00, 118.26, 122.29, 127.89, 128.31, 128.64, 129.52, 137.79, 139.31, 147.71, 149.50.

ACKNOWLEDGEMENTS

This work was supported by the project of ESF Foundation of Latvia (Project N 2009/0197/1DP/1.1.1.2.0/09/APIA/VIAA/014).

REFERENCES

1. A. Levai. Heterocycles, 75, 2155 (2008).
2. J.A. Smith and P.P. Molesworth, Progr. Heterocyclic Chem. 21, 491 (2009).
3. E.J Kontorowski and M.J. Kurth, Tetrahedron 56, 4317 (2000).
4. D.O Tymoshenko, Adv. Heterocycl. Chem. 96, 2 (2008)
5. J.B. Bremner, Progr. Heterocyclic Chem. 15, 385 (2003).
6. T. Tsuchiya in Comprehensive Heterocyclic Chemistry II, A.R. Katritzky, C.W. Rees and E.F.V. Scriven Eds.: Pergamon, Oxford, 1996, vol.9, p.309-331.
7. G.I. Yranzo and E.L. Moyano in Comprehensive Heterocyclic Chemistry III, A.R. Katritzky, C.A. Ramsden, E.F.V Scriven and R.J.K. Taylor Eds.: Elsevier, Oxford, 2008, vol.13, p.399431.
8. C. Lassalvy, C. Petrus and F. Petrus, Gazz. Chim. Ital. 111, 273 (1981).
9. M.W. Nötzel, K. Rauch, T. Labahn and A. de Meijere, Org. Lett., 4, 839 (2002).
10. (a) E. Abele, R. Abele, K. Rubina, J. Popelis, I. Sleiksa and E. Lukevics, Synth. Commun. 28, 2621 (1998); (b) E. Abele, R. Abele, P. Arsenyan, I. Shestakova, I. Kanepe, I. Antonenko, J. Popelis and E. Lukevics, Bioinorg. Chem. Appl. 1, 299 (2003).
11. M. Anbazhagan, C.E. Stephens and D.W. Boykin, Tetrahedron Lett. 43, 4221 (2002).
12. (a) T. Ikawa, T.E. Barder, M.R. Biscoe and S.L. Buchwald, J. Am. Chem. Soc. 129, 13001 (2007); (b) J. Yin and S.L. Buchwald, Org. Lett. 2, 1101 (2000); (c) J.Yin and S.L. Buchwald, J. Am. Chem. Soc. 124, 6043 (2002); (d) X. Huang, K.W. Anderson, D. Zim, L. Jiang, A. Klapars and S.L. Buchwald, J. Am. Chem. Soc. 125, 6653 (2003); (e) M.C. Willis, G.M. Brace and I.P. Holmes, Synthesis 3229 (2005); (f) A. Klapars, K.R. Campos, C. Chen and R.P. Volante, Org. Lett. 7, 1185 (2005).
13. I. Kalvinsh, R. Abele, L. Golomba, K. Rubina, J. Visnevska, T. Beresneva, I. Shestakova, E. Jaschenko, V. Bridane and E. Abele, Heterocyclic Letters 1, 47 (2011).

Received on October 27, 2011.

