SYNTHESIS OF NEW SULFUR-LINKED THIENOTRIAZOLOPYRIMIDINE DERIVATIVES CONTAINING TRIAZOLOTHIADIAZOLE MOIETY

Jina Whang and Yang-Heon Song*
Department of Chemistry, Mokwon University, Daejeon 302-729, South Korea
E-mail: yhsong@mokwon.ac.kr

Abstract

A series of new sulfur-linked heterocyclic compounds 11 were synthesized by the successive reactions of thieno[1,2,4]triazolo[4,3-c]pyrimidine-3-thione with α-bromophenylacetic acid derivatives and 4-amino-4 H - $[1,2,4]$ triazole-3,5-dithiol.

Keywords: thienotriazolopyrimidine, triazolothiadiazole, cyclization, phosphorus oxychloride

Introduction

Thienotriazolopyrimidine derivatives have attracted much attention and are of great interest as potential therapeutic agents. For instance, thienotriazolopyrimidine $\mathbf{1}$ as shown in Figure 1 and its analog have been recently explored for inhibitor of Shiga toxin trafficking and adenosine $\mathrm{A}_{1} / \mathrm{A}_{2 \mathrm{~A}}$ or $\mathrm{A}_{2 \mathrm{~A}} / \mathrm{A}_{3}$ receptor antagonists, respectively. ${ }^{1,2} \mathrm{We}$ have previously designed and synthesized thienotriazolopyrimidine derivatives 2 with promising biological activity using iodobenzene diacetate. ${ }^{3}$

Moreover, sulfur-containing 1,2,4-triazoles (3-thio-1,2,4-triazoles) were also reported to possess an impressive array of biological activities such as antibacterial, antifungal, analgesic, somatostatin $\mathrm{sst}_{2} / \mathrm{sst}_{5}$ agonist and carbonic anhydrase inhibitior. ${ }^{4-7}$ Particularly, sulfur-linked dihetrocyclic compounds containing triazolopyrimidine or triazole such as $\mathbf{3}$ and $\mathbf{4}$ were investigated for antifungal agent and plant growth regulator, respectively. ${ }^{8,9}$ We also have recently reported the synthesis of diheterocyclic compound 5 and its analogs. ${ }^{10}$

In the other hand, 1,2,4-triazolo[3,4-b][1,3,4]thiadiazole derivatives obtained by fusing 1,2,4triazole and 1,3,4-thiadiazole ring together, have been reported to possess antibacterial, antifungal, anti-inflammatory, analgesic effects and anticancer activity. ${ }^{11-13}$ For example, compound 6 and other 1,2,4-triazolo[3,4-b][1,3,4]thiadiazole derivatives were reported to have anti-inflammatory and antimicrobial activities, respectively. ${ }^{14-16}$

Therefore, we devised the introduction of a 1,2,4-triazolo[3,4-b][1,3,4]thiadiazole moiety to the thieno[1,2,4]triazolo[4,3-c]pyrimidine ring by sulfur to produce novel diheterocyclic systems using the concept of molecular hybridization. ${ }^{17}$

As a continuation of our synthetic works on heterocyclic compounds related to thienopyrimidines and thienopyridine with biological interest, ${ }^{18}$ we wish to report herein the synthesis of new sulfur-linked thienotriazolopyrimidines 11a-e containing a 1,2,4-triazolo[3,4$b][1,3,4]$ thiadiazole, which are structurally related to 5 and $\mathbf{6}$ in the hope of obtaining compounds of diverse biological activities.

1

2

5

3

Figure 1. Compounds 1-6.

Result and Discussion

As reported in a previous communication, ${ }^{10}$ a key intermediate thieno[3,2-e] [1,2,4] triazolo[4,3c] pyrimidine- $3(2 H)$-thione (7) can be prepared in a few step sequence using 2 -aminothiophene3 -carbonitrile as a starting material. The compounds of phenyl-(thieno[3,2-e][1,2,4]triazolo[4,3c] pyrimidin-3-ylthio)-acetic acid (9) and its derivatives were obtained in good yield by treatment of 7 with α-bromophenylacetic acid derivatives $\mathbf{8}$ containing sodium acetate (Scheme 1). The structure of these compounds was evident from their elemental analysis, mass spectra, ${ }^{1} \mathrm{H}$ NMR and IR spectra. The disappearance of characteristic peaks at 1200 (weak) and $3190 \mathrm{~cm}^{-1}$ for the $\mathrm{C}=\mathrm{S}$ and NH groups in IR spectrum and the secondary amino signal near at $\delta 14.0$ in ${ }^{1} \mathrm{H}$ NMR spectrum indicated the thione 7 was converted into the corresponding cyclic triazole products $9 \mathrm{a}-$ e. For instance, the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{9 a}$ showed two doublets at $\delta 8.02-7.73$ for thiophene protons, multiplet signals at $\delta 7.58-7.14$ for aromatic protons and two singlets at $\delta 9.49$ and 5.44 for pyrimidine and benzylic proton, respectively. The mass spectral data of 9a showed a molecular ion peak at m/z 342 (12\%), and also showed ions at m/z 324 (22\%) and 298 (78\%) which could be attributed to the loss of $\mathrm{H}_{2} \mathrm{O}$ and CO_{2}, respectively, from the molecular ion.

Scheme 1

6-[Phenyl(thieno[3,2-e][1,2,4]triazolo[4,3-c]pyrimidin-3-ylthio)-methyl]-2H-[1,2,4] triazolo[3,4$b][1,3,4]$ thiadiazole-3-thione and its derivatives (11a-e) were prepared from the reaction of $\mathbf{9 a - e}$ with 4-amino-4H-[1,2,4]triazole-3,5-dithiol (10) ${ }^{19}$ using phosphorus oxychloride as the cyclizing agent (Scheme 2). ${ }^{15,20}$

$\mathbf{a}: \mathrm{R}=\mathrm{H} ; \mathbf{b}: \mathrm{R}=2-\mathrm{Cl} ; \mathbf{c}: \mathrm{R}=3-\mathrm{Cl} ; \mathbf{d}: \mathrm{R}=4-\mathrm{Cl} ; \mathbf{e}: \mathrm{R}=4-\mathrm{Br}$
Scheme 2
The structure of these compounds was also characterized from their elemental analysis, mass spectra, ${ }^{1} \mathrm{H}$ NMR and IR spectra. For example, the characteristic bands at 1210 and $3190 \mathrm{~cm}^{-1}$ for the $\mathrm{C}=\mathrm{S}$ and NH stretching vibrations in IR spectrum of $\mathbf{1 1 b}$ were identified, like compound 7 having the same functional groups. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 1 b}$ showed two doublets at $\delta 8.05$ and 7.77 for thiophene protons, three multiplets at $\delta 7.59,7.51$ and $7.38-7.35$ for aromatic protons and two singlets at $\delta 9.59$ and 6.07 for pyrimidine and benzylic proton, respectively. The mass spectral data of 11b showed a molecular ion peak at $\mathrm{m} / \mathrm{z} 487$ (1.2%), and also showed ions at $\mathrm{m} / \mathrm{z} 332(100 \%), 297(54 \%), 155(42 \%)$ and $135(62 \%)$ which could be attributed to the loss of 1,2,4-triazolo[3,4-b][1,3,4]thiadiazole moiety and followed by next fragmentation, respectively, from the molecular ion. The ions at 208, 177 were fragments obtained from cleavage of sulfide bond of $\mathbf{1 1 b}$.

In conclusion, we have reported the synthesis of new sulfur-linked heterocyclic compounds 11a\mathbf{e} with potential biological activities.

Experimental section

Melting points were determined in capillary tubes on Büchi apparatus and are uncorrected. Each compound of the reactions was checked on thin-layer chromatograpohy of Merck Kieselgel $60 \mathrm{~F}_{254}$ and purified by column chromatograpohy Merck silica gel (70-230 mesh). The ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker DRX-300 FT NMR spectrometer (300 MHz) with $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard and chemical shifts are given in ppm (δ). IR spectra were recorded using an EXCALIBUR FTS-3000 FT IR spectrophotometer. Electron ionization mass spectra were recorded on a HP 59580 B spectrometer. Elemental analyses were performed on a Carlo Erba 1106 elemental analyzer.

General procedure for the preparation of 9a-e. To a solution of thieno[3,2-e][1,2,4]triazolo[4,3-c]pyrimidine-3(2H)-thione (7) (1.2 mmol) in ethanol (20 mL) anhydrous sodium acetate (2 mmol) was added with stirring at room temperature. After $5 \mathrm{~min}, \alpha$-bromophenylacetic acid derivatives $8(1.2 \mathrm{mmol})$ was added slowly in small portions and the resulting solution was heated at reflux for 6 hours. After cooling, the solid products formed were filtered, washed with
water and purified with silica gel column chromatography eluting with $50: 50 \mathrm{v} / \mathrm{v} \mathrm{CHCl}_{3} / \mathrm{MeOH}$ mixture.

Phenyl(thieno[3,2-e][1,2,4]triazolo[4,3-c]pyrimidin-3-ylthio)acetic acid (9a).

The compound was obtained in 65% yield, mp $206-208^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (dimethyl sulfoxide- d_{6}): 9.45 (s, $1 \mathrm{H}, \mathrm{H}-5$, pyrimidine), 8.02 (d, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8$, thiophene), 7.73 (d, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}$, H-9, thiophene), $7.58(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.37-7.14(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 5.44$ ($\mathrm{s}, 1 \mathrm{H}$, benzyl), ms: (m/z) 342 $\left(\mathrm{M}^{+}\right), 324,298,265,208,135,121$. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}: \mathrm{C}, 52.62 ; \mathrm{H}, 2.94 ; \mathrm{N}, 16.36$. Found: C, 52.49; H, 2.82; N, 16.42.

2-Chlorophenyl(thieno[3,2-e] [1,2,4]triazolo[4,3-c]pyrimidin-3-ylthio)acetic acid (9b).

The compound was obtained in 80% yield, $\mathrm{mp} 222-223^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (dimethyl sulfoxide- d_{6}): $9.54(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5$, pyrimidine), $8.04(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8$, thiophene), 7.75 (d, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}$, H-9, thiophene), 7.65 (d, 1H, Ar), 7.48 (d, 1H, Ar), 7.35-7.27 (m, 2H, Ar), 6.01 ($\mathrm{s}, 1 \mathrm{H}$, benzyl), ms: (m/z) $376\left(\mathrm{M}^{+}\right), 331,297,264,208,135,77$. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{ClN}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, 47.81; H, 2.41; N, 14.87. Found: C, 47.89; H, 2.48; N, 14.77.

3-Chlorophenyl(thieno[3,2-e][1,2,4]triazolo[4,3-c]pyrimidin-3-ylthio)acetic acid (9c).
The compound was obtained in 72% yield, $\mathrm{mp} 233-235^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (dimethyl sulfoxide- d_{6}): 9.49 (s, $1 \mathrm{H}, \mathrm{H}-5$, pyrimidine), 8.02 (d, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8$, thiophene), 7.73 (d, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}$, H-9, thiophene), $7.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 7.52(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.28-7.21(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 5.40(\mathrm{~s}, 1 \mathrm{H}$, benzyl), ms: (m/z) $376\left(\mathrm{M}^{+}\right), 332,299,264,208,177,155,135,77$. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{ClN}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, 47.81; H, 2.41; N, 14.87. Found: C, 47.74; H, 2.35; N, 14.80.

4-Chlorophenyl(thieno[3,2-e][1,2,4]triazolo[4,3-c]pyrimidin-3-ylthio)acetic acid (9d).

The compound was obtained in 70% yield, $\mathrm{mp} 214-216^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (dimethyl sulfoxide- d_{6}): 9.56 (s, 1H, H-5, pyrimidine), 8.04 (d, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8$, thiophene), 7.75 (d, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-9$, thiophene), 7.60 (d, 2H, Ar), 7.41 (d, 2H, Ar), 5.72 ($\mathrm{s}, 1 \mathrm{H}$, benzyl), ms: (m/z) 376 (M^{+}), 358, 332, 299, 155, 135, 77. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{ClN}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, 47.81; H, 2.41; N, 14.87. Found: C, 47.75; H, 2.44; N, 14.95.

4-Bromophenyl(thieno[3,2-e][1,2,4]triazolo[4,3-c]pyrimidin-3-ylthio)acetic acid (9e).
The compound was obtained in 63% yield, $\mathrm{mp} 266-267{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (dimethyl sulfoxide- d_{6}): 9.58 (s, $1 \mathrm{H}, \mathrm{H}-5$, pyrimidine), $8.06(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8$, thiophene), 7.77 (d, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-9$, thiophene), 7.58 (d, 2H, Ar), 7.52 (d, 2H, Ar), 5.70 ($\mathrm{s}, 1 \mathrm{H}$, benzyl), ms: (m/z) $421\left(\mathrm{M}^{+}\right), 403$, 377, 344, 134, 77. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{BrN}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, 42.76; H, 2.15; N, 13.30. Found: C, 42.70; H, 2.08; N, 13.38.

General procedure for the preparation of 11a-e. A mixture of 4-amino-4H-1,2,4-triazole-3,5dithiol (10) (6.7 mmol) and the appropriate carboxylic acid 9a-e (6.7 mmol) in phosphorus oxychloride (10 mL) was heated at reflux for 10 hours. The excess phosphorus oxychloride was removed under reduced pressure, and the residue was diluted with ice-water mixture. The precipitated solid was filtered, washed several times with water, dried at room temperature, and recrystallized from DMF.

6-[Phenyl(thieno[3,2-e][1,2,4]triazolo[4,3-c]pyrimidin-3-ylthio)methyl]-2H-[1,2,4]triazolo [3,4-b][1,3,4]thiadiazole-3-thione (11a).
The compound was obtained in 55% yield, mp $157-159^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (dimethyl sulfoxide- d_{6}): 9.62 (s, $1 \mathrm{H}, \mathrm{H}-5$, pyrimidine), 8.09 (d, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8$, thiophene), 7.82 (d, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}$, H-9, thiophene), 7.60 (d, $2 \mathrm{H}, \mathrm{Ar}$), 7.37-7.25 (m, 3H, Ar), 5.78 ($\mathrm{s}, 1 \mathrm{H}$, benzyl), ms: (m/z) 454 $\left(\mathrm{M}^{+}\right)$, 297, 177, 135, 77. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{~N}_{8} \mathrm{~S}_{4}$: C, 44.92; H, 2.22; N, 24.65. Found: C, 45.05; H, 2.11; N, 24.50.

6-[(2-Chlorohenyl)(thieno[3,2-e][1,2,4]triazolo[4,3-c]pyrimidin-3-ylthio)methyl]-2H-[1,2,4] triazolo[3,4-b][1,3,4]thiadiazole-3-thione (11b).
The compound was obtained in 62% yield, mp $160-162^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (dimethyl sulfoxide- d_{6}): $9.59(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5$, pyrimidine), $8.05(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8$, thiophene), $7.77(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}$, H-9, thiophene), $7.59(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.51(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.38-7.35(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 6.07(\mathrm{~s}, 1 \mathrm{H}$, benzyl), $\mathrm{ms}:(\mathrm{m} / \mathrm{z}) 487\left(\mathrm{M}^{+}\right), 341,332,297,264,208,177,155,135,77$. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{9} \mathrm{ClN}_{8} \mathrm{~S}_{4}: \mathrm{C}$, $41.75 ;$ H, 1.86; N, 22.91. Found: C, 41.67; H, 1.90; N, 22.82.

6-[(3-Chlorohenyl)(thieno[3,2-e][1,2,4]triazolo[4,3-c]pyrimidin-3-ylthio)methyl]-2H-[1,2,4] triazolo[3,4-b][1,3,4]thiadiazole-3-thione (11c).
The compound was obtained in 50% yield, mp $184-186^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (dimethyl sulfoxide- d_{6}): 9.58 (s, $1 \mathrm{H}, \mathrm{H}-5$, pyrimidine), 8.05 (d, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8$, thiophene), 7.75 (d, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}$, H-9, thiophene), $7.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 7.53(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.29-7.23(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 6.00(\mathrm{~s}, 1 \mathrm{H}$, benzyl), $\mathrm{ms}:(\mathrm{m} / \mathrm{z}) 489\left(\mathrm{M}^{+}\right), 332,297,208,155,135,77$. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{9} \mathrm{ClN}_{8} \mathrm{~S}_{4}: \mathrm{C}, 41.75 ; \mathrm{H}$, 1.86 ; N, 22.91. Found: C, 41.69; H, 1.80; N, 22.84.

6-[(4-Chlorohenyl)(thieno[3,2-e][1,2,4]triazolo[4,3-c]pyrimidin-3-ylthio)methyl]-2H-[1,2,4] triazolo[3,4-b][1,3,4]thiadiazole-3-thione (11d).
The compound was obtained in 66% yield, mp $164-166^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (dimethyl sulfoxide- d_{6}): 9.59 (s, 1H, H-5, pyrimidine), 8.05 (d, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8$, thiophene), 7.77 (d, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}$, H-9, thiophene), 7.58 (d, 2H, Ar), 7.39 (d, 2H, Ar), 5.75 ($\mathrm{s}, 1 \mathrm{H}$, benzyl), ms: (m/z) 489 (${ }^{+}$), 332, 297, 177, 155, 135. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{9} \mathrm{ClN}_{8} \mathrm{~S}_{4}$: C, 41.75; H, 1.86; N, 22.91. Found: C, 41.80; H, 1.78; N, 22.95.

6-[(4-Bromohenyl)(thieno[3,2-e][1,2,4]triazolo[4,3-c]pyrimidin-3-ylthio)-methyl]2H-[1,2,4] triazolo[3,4-b][1,3,4]thiadiazole-3-thione (11e).
The compound was obtained in 68% yield, $\mathrm{mp} 199-201{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (dimethyl sulfoxide- d_{6}): 9.61 (s, $1 \mathrm{H}, \mathrm{H}-5$, pyrimidine), 8.06 (d, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8$, thiophene), 7.78 (d, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-9$, thiophene), $7.59(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}), 7.53(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}), 5.73\left(\mathrm{~s}, 1 \mathrm{H}\right.$, benzyl), ms: (m/z) $533\left(\mathrm{M}^{+}\right), 375$, 177, 135. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{9} \mathrm{BrN}_{8} \mathrm{~S}_{4}$: C, 38.27; H, 1.70; N, 21.00. Found: C, 38.40; H, 1.62; N, 21.12.

Acknowledgement

This work was supported by the Korea Research Foundation (project number 2010-0021038).

References

1. L. J. Guetzoyan,, R. A. Spooner, J. M. Lord, L. M. Roberts, and G. J. Clarkson, Eur. J. Med.

Chem., 2010, 45, 275.
2. (a) M. R. Prasad, A. R. Rao, P. S. Rao, K. S. Rajan, S. Meena, and K. Madhavi, Eur. J. Med. Chem., 2008, 43, 614. (b) T. Nagamatsu, S. Ahmed, A. M. L. Hossion, and S. Ohno, Heterocycles, 2007, 73, 777.
3. B. S. Jo, H. Y. Son, and Y.-H. Song, Heterocycles, 2008, 75, 3091.
4. K. Colanceska-Ragenovic, V. Dimova, V. Kakurinov, D. G. Molnar, and A. Buzarrovska, Molecules, 2001, 6, 815.
5. A. Siwek, M. Wujec, M. Dobosz, E. Jagiełło-Wójtowicz, A. Chodkowska, A. Kleinrok, and P. Paneth, Cent. Eur. J. Chem., 2008, 6, 47.
6. M.-O. Contour-Galcéra, A. Sidhu, P. Plas, and P. Roubert, Bioorg. Med. Chem. Lett., 2005, 15, 3555.
7. G. L. Almajan, A. Innocenti, L. Puccetti, G. Manole, S. Barbuceanu, I. Saramet, A. Scozzafava, and C. T. Supuran, Bioorg. Med. Chem. Lett., 2005, 15, 2347.
8. Q. Chen, X.-L. Zhu, L.-L. Jiang, Z.-M. Liu, and G.-F. Yang, Eur. J. Med. Chem., 2008, 43, 595.
9. K. A. Eliazyan, L. V. Shahbazyan, V. A. Pivazyan, and A. P. Yengoyan, J. Heterocycl. Chem., 2011, 48, 188.
10. Y.-H. Song and H. Y. Son, J. Heterocycl. Chem., 2010, 47, 1183.
11. A.-M. M. E. Omar and O. M. AboulWafa, J. Heterocycl. Chem., 1986, 23, 1339.
12. Z. Y. Zhang and X. W. Sun, Heterocycles, 1998, 48, 561.
13. K. S. Bhat, D. J. Prasad, B. Poojary, and B. S. Holla, Phosphorus Sulfur and Silicon, 2004, 179, 1595.
14. M. Amir, H. Kumar, and S. A. Javed, Bioorg. Med. Chem. Lett., 2007, 17, 4504.
15. N. S. A. M. Khalil, Nucleosides Nucleotides Nucleic Acids, 2007, 26, 347.
16. N. S. A. M. Khalil, Eur. J. Med. Chem., 2007, 42, 1193.
17. C. Viegas-Junior, A. Danuello, V. S. Bolzani, E. J. Barreiro, and C. A. M. Fraga, Curr. Med. Chem., 2007, 14, 1829.
18. (a) Y.-H. Song and H. Y. Son, J. Heterocycl. Chem., 2011, 48, 597. (b) H. M. Lee and Y.-H. Song, Bull. Korean Chem. Soc., 2010, 31, 2242 (c) B. S. Jo and Y.-H. Song, Syn. Commun., 2009, 39, 4407. (d) Y.-H. Song and B. S. Jo, J. Heterocycl. Chem., 2009, 46, 1132. (e) Y.-H. Song, B. S. Jo, and H. M. Lee, Heterocycl. Commun., 2009, 15, 203. (f) Y.-H. Song and J. Seo, J. Heterocycl. Chem., 2007, 44, 1439. (g) Y.-H. Song, Heterocycl. Commun., 2007, 13, 33.
19. J. Sandstorm, Acta. Chem. Scand., 1961, 15, 1295.
20. N. S. A. M. Khalil, Eur. J. Med. Chem., 2007, 42, 1193.

Received on June 12, 2011.

