SYNTHESIS AND EVALUATION OF 2-BENZOTHIAZOLE FORMAMIDOXIMES AS NOVEL CLASS OF CYTOTOXIC AGENTS

Lena Golomba, Elina Jaschenko, Anita Gulbe, Irina Shestakova, Edgars Abele

Latvian Institute of Organic Synthesis, 21 Aizkraukles Street, Riga, LV-1006, Latvia, E-mail: <u>abele@osi.lv</u>

ABSTRACT:

Synthesis of 2-pyridine, 2-thiazole and 2-benzothiazole substituted formamidoximes from corresponding amines in the system DMF-DMA / NH_2OHHCl / i-PrOH were described. The cytotoxicity of studied compounds towards HT-1080 (human fibrosarcoma), MG-22A (mouse hepatoma) and 3T3 (mouse embryonic fibroblasts) cancer cell lines was presented. 2-Benzothiazole formamidoxime exhibit high activity against HT-1080 and MG-22A cancer cell lines.

Keywords: 2-Pyridine formamidoxime, 2-thiazole formamidoxime, 2-benzothiazole formamidoximes, heteroaromatic amines, cytotoxicity

INTRODUCTION

Benzothiazole amino derivatives are of interest as anticancer and cytotoxic agents ^{1-IV}. Beside this, three recent reviews were dedicated to antitumoral activity of benzothiazole derivatives ^{V-} ^{VII}. Biological activity of benzothiazole oximes was reviewed too ^{VIII}. Recently cytotoxic activity of benzothiazole amidoximes ^{IXa} and antitubercular activity of N'-hydroxy-N-(4H,5Hnaphtho[1,2-d]thiazol-2-yl)methanimidamides were presented ^{IXb}. Synthesis of unknown benzothiazole formamidoximes is one of aim of the present work. 2-Pyridine formamidoxime (1), according literature data, was prepared by treatment of 2-aminopyridine with DMF-DMA (then with NH₂OH HCl) ^X or by interaction of N-pyridyl-2-ylthioformamide with NH₂OH in MeOH ^{XIa,b}. Similarly was prepared thiazole formamidoxime (2) ^{XIc}. The second aim is investigation of cytotoxicity of obtained formamidoximes.

RESULTS AND DISCUSSION

Herein we report a detailed synthesis of novel benzothiazole **3a-9a** formamidoximes from corresponding amino derivatives **3-9** by two step method. The first reaction step include treatment of compounds **1-9** with dimethylformamide dimethylacetal (DMF-DMA) leading to imine intermediates (HetN=CHNMe₂). Treatment of these intermediates with NH₂OH HCl in i-PrOH afforded desired formamidoximes **1a-9a** in 20-77% yields (Table 1).

Table 1. Synthesis of formamidoximes 1a-9a from amines 1-9 in the system DMF-DMA / NH₂OH / i-PrOH.

Product	Yield,	Melting	¹ H NMR, δ, ppm	¹³ C NMR,	LC-MS
	%	point, °C		δ, ppm	
~	77	<u> </u>	(90)(96) and 755	110.20	120
	//	89	0.80-0.80 and 7.55-	110.29,	138
			7.64 (both m, 2H, 4-	116.17,	(M +1,
N N NOH			H and 5-H), 7.04 (d,	135.54,	100),
П 1а			1H, J = 8Hz, 3-H),	137.97,	123
1a			7.85 (d, 1H, CH),	147.37,	(25),
			8.11-8.14 (m, 1H, 6-	152.50	120
			H), 9.34 (d, 1H, J =		(41),
			10Hz, NH), 10.07 (s,		111 (18)
			1H, OH)		~ /
	20	161	6.95 and 7.21 (both	110.77,	144
N NOH			bs, 2H, H-4 and H-	135.75,	$(M^{+}+1,$
S H			5), 7.56 (d, 1H, J =	138.39	50), 126
2a			8.8 Hz, CH), 10.24	162.33	(100)
			(s. 1H. OH), 10.38		()
			(d 1H J = 88 Hz)		
			NH)		
N) A	21	152	7.13-7.21, 7.30-7.37,	119.43,	194
NOH № NOH			7.57-7.61, 7.70-7.74,	121.42,	$(M^{+}+1,$
S' H			7.81-7.85 (all m, 5H,	122.53,	100),
3 a			C_6H_4 and CH), 10.52	125.84,	151 (17)
			(s, 1H, OH), 10.75	131.15,	
			(d, 1H, J = 10Hz,	135.07,	
			NH).	150.83,	
			,	161.05	

N	46	183	7.17 and 7.58 (both	108.06,	212
NOH			m, 2H, H-4 and H-	113.46,	$(M^{+}+1,$
F S H			5), 7.69 (s, 1H, CH),	120.20,	50), 194
4a			7.76 (d, 1H, $J = 2.0$	132.31,	(90),
			Hz, H-7), 10.53 (s,	134.96,	256
			1H, NH), 10.74 (s,	147.59,	(100),
			1H, OH)	156.77,	142 (35)
				160.99	
N A	52	172	7.34 and 7.56 (both	120.45,	228
NOH			d, 2H, $J = 7.2$ Hz,	121.22,	(M ⁺ +1,
Cl S n			H-4 and H-5), 7.70	126.09,	50), 210
5a			(d, 1H, J = 8.8 Hz,	126.45,	(80),
			CH), 7.97 (s, 1H, H-	132.87,	184
			7), 10.57 (s, 1H,	134.88,	(100),
			OH), 10.84 (d, 1H, J	149.73,	158 (35)
			= 8.8 Hz, NH)	161.86	
Br	77	204	7.33 and 7.80 (both	118.60,	274
			d, 2H, J = 8.4 Hz, H-	121.78,	$(M^{+}+1,$
S II			6 and H-7), 7.69 (s,	123.20,	90), 256
6a			1H, CH), 7.76 (d,	125.06,	(100),
			1H, J = 2.0 Hz, H-4),	130.46,	230
			10.60 (s, 1H, OH),	134.78,	(80),
			10.89 (d, 1H, J =	132.32,	165 (50)
			10Hz, NH)	162.69	
Me	45	195	2.25 and 2.26 (both	19.31,	222
N [*] NOH			s, 3H, Me), 7.38 and	19.59,	(M ⁺ +1,
Me ⁻ S			7.54 (both s, 2H,	120.10,	70), 204
7a			both benzothiazole	121.31,	(100),
			protons), 7.67 (d,	128.29,	170
			1H, J = 9.2 Hz, CH),	131.09,	(50).
			10.44 (s, 1H, OH),	134.24,	
			10.62 (d, 1H, J = 9.2	135.21,	
			Hz, NH)	149.30,	
	27	1.61		160.20	224
N NOU	27	161	3.76 (s, 3H, Me),	55.50,	224 0 (⁺ +1
NOH			6.93 and 7.65 (both	105.42,	(M + 1, 0)
			a, J = 10HZ, 4-H and	113.76,	90), 206
oa			(3-H), /.40 (S, 1H, /-1)	119.90,	(100),
			$H_{\rm H}$, /.50 (0, 1H, J =	132.32,	181 (80)
			$\delta \Pi Z$, NH), 10.44 (S, 111 OID) 10.59 (1	135.19,	
			$ 1H, UH \rangle$, $ 10.58 (d, 1H, L - 10H, NH)$	144.91,	
			IH, J = I0HZ, NH)	155.34,	
				159.14	

Eto S H NOH	39	148	1.32 (t, 3H, J = 8Hz, Me), 4.01 (q, 2H, CH ₂), 6.92 and 7.67 (both d, J =10Hz, 4- H and 5-H), 7.44 (s, 1H, 7-H), 7.47 (d,	14.62, 63.48, 106.04, 114.17, 119.87, 132.28,	238 (M ⁺ +1, 90), 220 (100), 195 (60)
			1H, 7-H), 7.47 (d, 1H, J = 8Hz, NH),	132.28, 135.18,	
			10.45 (s, 1H, OH),	144.83,	
			10.58 (d, 1H, J =	154.55,	
			10Hz, NH)	159.09	

Cytotoxic activity of formamidoximes **1a-9a** was tested *in vitro* on the monolayer tumor cell lines: MG-22A (mouse hepatoma) and HT-1080 (human fibrosarcoma) (Table 2). Concentrations providing 50% of tumor death effect (IC₅₀) were calculated according to the known procedure using 96 well plates. A preliminary analysis of the structure-activity relationship for the cytotoxic action clearly indicates the strong influence of substituent in 2benzothiazole ring on toxic effects *in vitro*. Among 2-benzothiazole formamidoximes **3a-9a** unsubstituted compound **3a** exhibit the high cytotoxicity on the MG-22A and HT-1080 cell lines (IC₅₀ 3 µg/mL). Among substituted products **4a-9a** dimethyl substituted product **7a** exhibit high cytotoxicity on the HT–1080 (IC₅₀ 6 µg/mL) and methoxy substituted product **8a** on the MG-22A (IC₅₀ 7 µg/mL) cell lines. Halogen substituted benzothiazole **4a-6a** and thiazole **1a** formamidoximes exhibit middle cytotoxicity on the HT–1080 and MG-22A cancer cell lines. Pyridine formamidoxime **1a** was essentially inactive on the both above cancer cells lines.

Acute toxicity of synthesized compounds was tested on 3T3- Swiss Albino mice embrio fibroblasts. In general, the compounds **2a-9a** exhibit middle toxicity in the range LD_{50} 451-985 mg/kg (Table 2).

Compound	HT-1080, IC ₅₀	MG-22A, IC ₅₀	3T3, LD ₅₀
1 a	Х	*	>2000
2a	27	18	458
3 a	3	3	985
4 a	24	19	591
5a	25	18	615
6a	17	35	653
7a	6	14	531
8 a	15	7	647
<u>9</u> a	20	12	451

Table 2. Cytotoxicity of formamidoximes 1-9a IC₅₀ (µg/ml)

^{*}No cytotoxic activity

EXPERIMENTAL SECTION

 1 H and 13 C NMR spectra were recorded on a spectrometer Varian 400_{MR} (400 MHz) in DMSO-D₆ using TMS as internal standard. LC-MS spectra were recorded on Alliance Waters 2695 instrument and Waters 3100 mass detector. 2-Aminothiazole and 2-aminobenzothiazoles, dimethylformamide dimethylacetal (DMF-DMA) and hydroxylamine hydrochloride (Acros and AlfaAesar) were used without additional purification.

Typical procedure for the preparation of formamidoximes 1a-9a. A mixture of 2aminopyridine 1 or aminothiazoles 2-9 (5 mmol), DMF-DMA (0.87 ml, 6.5 mmol) in isopropanol (2 ml) was refluxed for 3h. Reaction mixture was cooled to 50° C, hydroxylamine hydrochloride (0.45g, 6.5 mmol) was added and reaction mixture was stirred at 50° C for 12 h. Reaction mixture was evaporated to dryness, recrystallized from EtOH or purified by column chromatography (eluent CH₂Cl₂ : EtOH 10:1). The properties of obtained compounds 1a-9a see Table 1.

In vitro cytotoxicity assay. Monolayer tumor cell lines –HT-1080 (human fibrosarcoma), MG-22A (mouse hepatoma), 3T3 (mouse Swiss Albino embryo fibroblasts), - were cultured in standard medium (Dulbecco's modified Eagle's medium; "Sigma") supplemented with 10% fetal bovine serum ("Sigma"). Tumor cell lines were obtained from the "ATCC". After the ampoule had thawed, cells from one to four passages were used in three concentrations test compound: 1, 10 and 100 µg ml⁻¹. About 10 x10⁴ cells ml⁻¹ were placed in 96-well plates immediately after compounds were added to the wells; the volume of each plate was 200 µl. The control cells without test compounds were cultured on separate plate. The plates were incubated for 72h, 37°C, 5% CO₂. The number of surviving cells was determined using tri(4-dimethylaminophenyl)methyl chloride (crystal violet: CV) or 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolinium bromide (MTT) ^{XII, XIII}. The quantity on the control plate was taken in calculations for 100%. LD₅₀ was tested according "Alternative Toxicological Methods" ^{XIV}. The program Graph Pad Prism[®] 3.0 was used for calculations (r \Box <0.05.).

ACKNOWLEDGEMENTS

This work was supported by the project of ESF Foundation of Latvia (Project N2009/0197/1DP/1.1.1.2.0/09/APIA/VIAA/014).

REFERENCES

- I. S.D. Gupta, N.S.H.N. Moorthy and V. Sanyal, Int. J. Pharmacy and Pharmaceutical Sci., 2 (3), 57 (2010).
- II. S. Kini, S.P. Swain and A.M. Gandhi, Indian J. Pharm. Sci. 69, 46 (2007).
- III. V.R. Solomon, C. Hu and H. Lee, Bioorg. Med. Chem. 17, 7585 (2009).
- IV. M.N. Noolvi, H.M. Patel and M. Kaur, Eur. J. Med. Chem. 54, 447 (2012).
- V. S. Sareen, D. Shinde, V. Khatri and V. Sareen, Heterocyclic Lett. 2, 361 (2012).
- VI. P.S. Yadav, Devprakash and Senthilkumar G.P., Int. J. Pharm. Sci. Drug Res. 3, 1 (2011).
- VII. A. Rana, N. Siddiqui and S.A. Khan, Indian J. Pharm Sci. 69, 10 (2007).
- VIII. E. Abele, R. Abele and E. Lukevics, Chem. Heterocycl. Comp. 43, 945 (2007).
- IX. (a) I. Kalvinsh, R. Abele, L. Golomba, K. Rubina, J. Visnevska, T. Beresneva, I. Shestakova E. Jaschenko, V. Bridane and E. Abele, Heterocyclic Lett. 1, 47 (2011); (b) S. Bhat, O. Olaleye, K.J. Meyer, W. Shi, Y. Zhang and J.O. Liu, Bioorg. Med. Chem. 20, 4507 (2012).
- X. E. Huntsman and J. Balsells, Eur. J. Org. Chem. 3761 (2005).
- XI. (a) L. Golič, Č. Stropnik, B. Stanovnik and M. Tišler, Heterocycles 25, 347 (1987); (b)

M. Tišler, B. Stanovnik, Z. Zrimšek and Č. Stropnik, Synthesis 299 (1981); (c) B. Stanovnik, O. Bajt, B. Balčič, B. Koren, M. Prhavc, A. Štimac and M. Tišler, Heterocycles, 22, 1545 (1984).

- XII. D.J. Fast, R.C. Lynch and R.W. Leu, J. Leuckocyt. Biol. 52, 255 (1992).
- XIII. P.J. Freshney, Culture of Animal Cells (A Manual of Basic Technique), Wiley-Liss, New York, 1994, pp. 296-297.
- XIV. http://iccvam.niehs.nih.gov/methods/invidocs/guidance/iv_guide.htm [2004.01.10].

Received on August 27,2012.