HL http://heteroletters.org

A NOVEL SYNTHESIS OF 14-ARYL-14*H*-NAPHTO [2,1-*b*]PYRANO[3,2-*e*][1,2,4]TRIAZOLO[1,5-*c*]PYRIMIDINES

Kamar Mkaouar ^{1,*}, Fakher Chabchoub ¹, Abdelouahid Samadi, ² José Marco-Contelles, ² and Mansour Salem ¹

 ¹Laboratoire de Chimie Appliquée: Hétérocycles, Corps Gras et Polymères, Faculté des Sciences de Sfax, 3000- Sfax, Tunisia. Université de Sfax.
²Laboratorio de Radicales Libres y Química Computacional (Instituto de Química Orgánica, CSIC); Juan de la Cierva, 3. 28006- Madrid, Spain * Corresponding author. Tel.: +216 23 56 78 81; fax: +216 74 67 66 06. E-mail: <u>kmarmkaouar_fourati@yahoo.fr</u>

Abstract:

A new series of 14-aryl-14*H*-naphto[2,1-*b*]pyrano[3,2-*e*][1,2,4]triazolo[1,5-*c*]pyrimidines **5** were synthesised by reacting an excess of triethyl orthoformate with 11-aryl-1,12-dihydro-11*H*-naphtopyrano[2,3-*d*]pyrimidines **3**, as readily available starting materials, in moderate yields from imidates **2** and tosylhydrazine.

Keywords: Naphtopyrans, imidates, naphtopyranopyrimidines, triazolopyrimidines.

Introduction

The triazole heterocyclic ring system has received considerable attention among synthetic chemists because molecules bearing this structural feature have been found to display a wide range of potent biological activities in medicinal chemistry, as antibacterial, antifungal, (1,2) antigenotoxic, (3) anti-inflammatory and analgesic agents, (4) and in the agrochemical field, showing herbicidal activity (5).

In our laboratory, the synthesis and reactivity of these substrates has been the subject of a number of publications (6-13). Now in this work we describe the synthesis of a series of new triazolopyrimidines from readily available 2-amino-4-aryl-3-cyano-4H-naphto[2,1-b]pyrans as precursors.

Results and Discussion

According to the previously reported method by Messaâd and al. (14), we have synthesized a new series of 2-amino-4-aryl-3-cyano-4*H*-naphto[2,1-*b*]pyrans 1, and have submitted them to reaction with triethyl orthoformate using acetic anhydride as solvent to give imidates 2a-d in good yields (Scheme 1).

Next, and based on our previous works, (3,14) we have tried to generalize the method for obtaining new compounds 2 with R groups as methyl, and ethyl by using other orthoesters. However, we noticed that the reaction in these cases was not selective, giving a mixture of compounds. For this reason, we have developed a new and facile synthetic procedure based on the reaction of pyrans 1 with triethyl orthoacetate or triethyl orthopropionate, in 1,4-dioxane, in presence of catalytic amount of acetic acid, under reflux, to give the corresponding 2e-i, and 2j-n derivatives, respectively, in good yields (Scheme 1).

Scheme1. Synthesis of 2-[(ethoxyalkylidene)amino]-4-aryl-3-cyano-4*H*-naphto[2,1-*b*]pyrans **2**. Reaction conditions: (i) RC(OEt)₃, 1,4-dioxane, reflux 72 h and few drops of acetic acid.

Next, the reaction of these imidates **2**, with tosylhydrazine, in toluene, at reflux, afforded the desired key intermediates N^{1} -tosylamino-11-aryl-1,12-dihydro-11*H*-naphtopyrano[2,3-*d*]pyrimidines **3** (Scheme 2). All new compounds showed good analytical and spectroscopic data, in agreement with their structures.

Scheme2. Synthesis of N^{l} -tosylamino-11-aryl-1,12-dihydro-11*H*-naphtopyrano[2,3-*d*]pyrimidines **3**. Reaction conditions: (i) NH₂NHTs, toluene, reflux 48 h and few drops of acetic acid.

In the next step, we condensed the N^{l} -tosylaminonaphtopyrano[2,3-*d*]pyrimidines **3** with an excess of triethyl orthoformate to give 14-aryl-14*H*-naphto[2,1-*b*]pyrano[3,2*e*][1,2,4]triazolo[1,5-*c*]pyrimidines **5**. To the best of our knowledge these compounds are new and have been described here for the first time (Scheme 3). In agreement with their structure, in the ¹H NMR spectral we did not observe the signals for the tosyl and the ethyl groups, but a singlet at 8.66-8.30 ppm range, corresponding to H₂ was observed. In addition, the microanalysis, and the mass spectra confirmed the final structure in all the examples.

The formation of compounds 5 can be explained by a sequence of events *via* intermediates of type 4, formed in the reaction of N^{l} -tosylaminonaphtopyrano[2,3-*d*]pyrimidines 3 with triethyl orthoformate, followed by spontaneous ethyl 4-methylbenzenesulfonate elimination (Scheme 3).

Scheme3. Synthesis of 14-aryl-14*H*-naphto[2,1-*b*]pyrano[3,2-*e*][1,2,4]triazolo[1,5-*c*]pyrimidines **4**.

Experimental Section

General Procedures. All melting points were determined on a Kofler type microscope and are uncorrected. IR spectra were recorded on a Perkin Elmer FT-IR spectrophotometer (4000-400 cm⁻¹) using KBr pellets. ¹H NMR and ¹³C NMR spectra were recorded at room temperature in CDCl₃ or DMSO-d₆ at 300, 400 or 500 MHz and at 75, 100 or 125 MHz, respectively, using solvent peaks (CDCl₃: 7.27 (*D*), 77.2 (*C*) ppm and DMSO-d₆ 2.50 (D) and 39.7 (C) ppm) as internal reference. Mass spectra were recorded on a GC/MS spectrometer with an API-ES ionization source. Elemental analyses were performed at the Instituto de Química Orgánica General de Madrid (Consejo Superior de Investigaciones Científicas, Spain). All solvents were dried by standard methods.

General procedure for the synthesis of 2-amino-4-aryl-3-cyano-4H-naphto[2,1-b]pyrans <u>1a-g</u>. The required naphto[2,1-b]pyrans 1a-e were obtained using known experimental procedures developed previously by Messaâd and al. (14). Following this typical experiment, a mixture of 2-naphtol (0.01 mmol, 1.5 g) and enaminonitrile (0.01 mmol, 1.7 g) in ethanol (30 mL) was refluxed for 10 hours with the presence of 0.2 equivalent of piperidine. The solvent was evaporated to dryness under reduced pressure. The solid was collected by filtration and purified by recrystallization from toluene. Based on this typical method, we were able to synthesize the new compounds 1f,g.

2-Amino-3-cyano-4-(*o*-methoxyphenyl)-4*H*-naphto[2,1-*b*]pyran <u>1f</u>. Yellow solid; yield 66%; 1.5g; mp 228 °C; IR (v_{max} , cm⁻¹) 3342 and 3456 (NH₂), 2182 (C=N). ¹H NMR (DMSO-*d*₆, 300 MHz) δ_{H} , ppm: 3.36 (s, 3H, OCH₃), 5.58 (s, 1H, H₄), 6.73-7.90 (m, 10H, Ar-H), 7.74 (br, s, 2H, NH₂); ¹³C NMR (DMSO-*d*₆, 75 MHz) δ_{C} , ppm: 32.0 (C₄), 56.4 (OCH₃), 57.4 (C₃), 112.1 (CN), 116.3, 117.2, 120.9, 121.5, 123.4, 125.3, 127.6, 128.4, 128.9, 129.0, 129.6, 130.7, 131.1, 134.1, 147.6, 156.1, 160.6.

2-Amino-3-cyano-4-(*o*,*p*-dimethoxyphenyl)-4*H*-naphto[2,1-*b*]pyran <u>1</u>g</u>. Yellow solid; yield 30%; 0.7g; mp 188°C; IR (v_{max} , cm⁻¹) 3335 and 3429 (NH₂), 2185(C=N). ¹H NMR (DMSO-*d*₆, 300 MHz) δ_{H} , ppm: 3.62 (s, 3H, OCH₃), 3.65 (s, 3H, OCH₃), 5.24 (s, 1H, H₄), 6.56-8.88 (m, 9H, Ar-H), 7.40 (br, s, 2H, NH₂); ¹³C NMR (DMSO-*d*₆, 75 MHz) δ_{C} , ppm: 38.1 (C₄), 55.8 (2x OCH₃, 2C), 58.5 (C₃), 111.4 (CN), 112.5, 116.3, 117.2, 119.4, 121.2, 124.2, 125.3, 127.5, 128.9, 129.8, 130.7, 131.2, 138.8, 147.2, 147.9, 149.0, 160.1.

General procedure for the synthesis of 2-[(ethoxyalkyliden)amino]-4-aryl-3-cyano-4*H*-naphto[2,1-*b*]pyrans <u>2a-n</u>. A solution of naphtopyrans 1 (0.001 mol, 0.3 g) and triethyl orthoester (0.002 mmol, 0.4 g) was heated at reflux in 1,4-dioxane (15 mL) for 72 h in the presence of few drops of acetic acid. The solvent was evaporated and the solid was collected by filtration and purified by recrystallisation with suitable solvent to give compounds **2e-n** in good yields. The 2-[(ethoxymethyliden)amino]-3-cyano-4-aryl-4*H*-naphto[2,1-*b*]pyrans **2a-d** have already been prepared following a procedure reported by Messaâd and al. (14).

2-[(Ethoxyethyliden)amino]-3-cyano-4-phenyl-4*H***-naphto[2,1-***b***]pyran <u>2e</u>. White powder; yield 65%; 0.24 g; mp 94-97 °C; IR (v_{max}, cm⁻¹) 2199 (C=N), 1644 (C=N). ¹H NMR (CDCl₃, 300 MHz) \delta_{H}, ppm: 1.34 (t, ³***J***= 7.5 Hz, 3H, OCH₂CH₃), 2.07 (s, 3H, CH₃), 4.29 (q, ³***J***= 7.5 Hz, 2H, OCH₂CH₃), 5.35 (s, 1H, H₄), 7.19-7.83 (m, 11H, Ar-H); ¹³C NMR (CDCl₃, 75 MHz) \delta_{C}, ppm: 13.8, 18.0, 40.5, 63.7, 76.6, 113.9, 117.0, 118.5, 123.6, 125.1, 127.2, 127.2, 127.4 (2C), 128.4, 129.0 (2C), 129.7, 130.6, 131.4, 143.6, 147.9, 159.8, 168.3.**

2-[(Ethoxyethyliden)amino]-3-cyano-4-(*p***-methylphenyl)-4***H***-naphto[2,1-***b***]pyran <u>2f</u>. White powder; yield 80%; 0.30 g; mp 100-103 °C; IR (v_{max}, cm⁻¹) 2202 (C=N), 1639 (C=N). ¹H NMR (CDCl₃, 300 MHz) \delta_{H}, ppm: 1.36 (t, ³***J***= 7.5 Hz, 3H, OCH₂CH₃), 2.10 (s, 3H, CH₃), 2.27 (s, 3H, CH₃), 4.31 (q, ³***J***= 7.5 Hz, 2H, O<u>CH₂CH₃</u>), 5.31 (s, 1H, H₄), 7.08-7.82 (m, 10H, Ar-H); ¹³C NMR (CDCl₃, 75 MHz) \delta_{C}, ppm: 14.0, 18.1, 21.1, 40.2, 63.8, 76.7, 114.2, 117.1, 118.8, 123.8, 125.1, 127.4 (2C), 128.5, 129.7 (4C), 130.8, 131.5, 136.9, 140.9, 147.9, 159.8, 168.4.**

2-[(Ethoxyethyliden)amino]-3-cyano-4-(*o***-methoxyphenyl)-***4H***-naphto**[**2**,1-*b*]**pyran 2g**. Yellow powder; yield 92%; 0.28 g; mp 124-125 °C; IR (v_{max} , cm⁻¹) 2205 (C=N), 1661 (C=N). ¹H NMR (CDCl₃, 300 MHz) δ_{H} , ppm: 1.34 (t, ³*J*= 7.5 Hz, 3H, OCH₂<u>CH</u>₃), 2.11 (s, 3H, CH₃), 3.90 (s, 3H, OCH₃), 4.32 (q, ³*J*= 7.5 Hz, 2H, O<u>CH</u>₂CH₃), 5.93 (s, 1H, H₄), 6.79-7.79 (m, 10H, Ar-H); ¹³C NMR (CDCl₃, 75 MHz) δ_{C} , ppm: 14.0, 18.1, 33.1, 56.0, 63.7, 76.5, 111.3, 114.9, 117.0, 118.7, 121.4, 123.6, 125.1, 127.3, 128.5 (2C), 129.4 (2C), 130.9, 131.4, 132.40, 148.3, 155.9, 160.5, 168.3.

2-[(Ethoxyethyliden)amino]-4-(*p***-chlorophenyl)-3-cyano-4***H***-naphto[2,1-***b***]pyran <u>2h</u>. White powder; yield 60%; 0.22 g; mp 110-112 °C; IR (v_{max}, cm⁻¹) 2200 (C=N), 1658 (C=N). ¹H NMR (CDCl₃, 300 MHz) \delta_{H}, ppm: 1.37 (t, ³***J***= 7.5 Hz, 3H, OCH₂CH₃), 2.11 (s, 3H, CH₃), 4.31 (q, ³***J***= 7.5 Hz, 2H, O<u>CH</u>₂CH₃), 5.32 (s, 1H, H₄), 7.19-7.85 (m, 10H, Ar-H); ¹³C NMR (CDCl₃, 75 MHz) \delta_{C}, ppm: 14.3, 18.6, 40.4, 64.3, 77.0, 113.7, 117.4, 118.9, 123.9, 125.7, 127.8, 129.0 (2C), 129.2 (2C), 129.6, 130.5, 130.8, 131.9, 133.4, 142.6, 148.3, 160.3, 168.8.**

2-[(Ethoxyethyliden)amino]-3-cyano-4-(*o,p*-dimethoxyphenyl)-4*H*-naphto[2,1-*b*]pyran <u>2i</u>. Yellow hite powder; yield 92%; 0.35 g; mp 114-116 °C; IR (v_{max} , cm⁻¹) 2207 (C=N), 1664 (C=N). ¹H NMR (CDCl₃; 300 MHz) δ_{H} , ppm: 1.33 (t, ³*J*= 7.5 Hz, 3H, OCH₂<u>CH₃</u>), 2.08 (s, 3H, CH₃), 3.78 (s, 6H, 2x OCH₃), 4.28 (q, ³*J*= 7.5 Hz, 2H, O<u>CH₂</u>CH₃), 5. 82 (s, 1H, H₄), 6.73-7.81 (m, 9H, Ar-H); ¹³C NMR (CDCl₃, 75 MHz) δ_{C} , ppm: 13.9, 18.1, 40.2, 55.8, 55.9, 63.8, 76.7, 110.5, 111.4, 114.0, 117.0, 118.8, 119.6, 123.8, 125.2, 127.3, 128.5, 129.8, 130.8, 131.5, 136.5, 147.9, 148.1, 149.3, 159.73, 168.4.

2-[(Ethoxypropyliden)amino]-3-cyano-4-phenyl-4*H***-naphto[2,1-***b***]pyran <u>2i</u>. White powder; yield 95%; 0.26 g; mp 166-168 °C; IR (v_{max}, cm⁻¹) 2198 (C=N), 1663 (C=N). ¹H NMR (CDCl₃, 300 MHz) \delta_{H}, ppm: 1.16 (t, ³***J***= 7.5 Hz, 3H, CH₂CH₃), 1.34 (t, ³***J***= 7.5 Hz, 3H, OCH₂CH₃), 2.38 (q, ³***J***= 7.5 Hz, 2H, <u>CH</u>₂CH₃), 4.28 (q, ³***J***= 7.5 Hz, 2H, O<u>CH</u>₂CH₃), 5.35 (s, 1H, H₄), 7.19-7.83 (m, 11H, Ar-H); ¹³C NMR (CDCl₃, 75 MHz) \delta_{C}, ppm: 10.3, 13.8, 25.5, 40.5, 63.6, 76.6, 114.0, 117.0, 118.7, 123.7, 125.1, 127.2, 127.2, 127.4 (2C), 128.4, 128.9 (2C), 129.7, 130.7, 131.5, 143.6, 147.9, 159.6, 171.8.**

2-[(Ethoxypropyliden)amino]-3-cyano-4-(*p***-methylphenyl)-4***H***-naphto[2,1-***b***]pyran <u>2k</u>. White powder; yield 90%; 0.35 g; mp 112-114 °C; IR (v_{max}, cm⁻¹) 2199 (C=N), 1633 (C=N). ¹H NMR (CDCl₃, 300 MHz) \delta_{H}, ppm: 1.20 (t, ³***J***= 7.5 Hz, 3H, CH₂<u>CH₃</u>), 1.37 (t, ³***J***= 7.5 Hz, 3H, OCH₂<u>CH₃</u>), 2.28 (s, 3H, CH₃), 2.44 (q, ³***J***= 7.5 Hz, 2H, <u>CH₂CH₃</u>), 4.33 (q, ³***J***= 7.5 Hz, 2H, O<u>CH₂CH₃</u>), 5.32 (s, 1H, H₄), 7.08-7.83 (m, 10H, Ar-H); ¹³C NMR (CDCl₃, 75 MHz) \delta_{C}, ppm: 10.5, 13.9, 21.1, 25.6, 40.2, 63.7, 76.7, 114.2, 117.1, 118.9, 123.8, 125.1, 127.3, 127.4 (2C), 128.5, 129.7 (3C), 130.8, 131.5, 136.8, 140.9, 147.9, 159.6, 171.8.**

2-[(Ethoxypropyliden)amino]-3-cyano-4-(*o***-methoxyphenyl)-4***H***-naphto**[**2**,1-*b*]**pyran 21**. Yellow powder; yield 93%; 0.38 g; mp 126 °C; IR (v_{max} , cm⁻¹) 2197 (C=N),1643 (C=N). ¹H NMR (CDCl₃, 300 MHz) δ_{H} , ppm: 1.20 (t, ³*J*= 7.5 Hz, 3H, CH₂<u>CH₃</u>), 1.36 (t, ³*J*= 7.5 Hz, 3H, OCH₂<u>CH₃</u>), 2.42 (q, ³*J*= 7.5 Hz, 2H, <u>CH₂CH₃</u>), 3.99 (s, 3H, OCH₃), 4.32 (q, ³*J*= 7.5 Hz, 2H, O<u>CH₂CH₃</u>), 5.93 (s, 1H, H₄), 6.76-7.79 (m, 10H, Ar-H); ¹³C NMR (CDCl₃, 75 MHz) δ_{C} , ppm: 10.5, 13.9, 25.5, 33.0, 56.0, 63.6, 76.2, 111.2, 115.0, 116.9, 118.8, 121.3, 123.6, 125.0, 127.2, 128.4 (2C),129.3 (2C), 130.9, 131.4, 132.4, 148.3, 155.9, 160.3, 171.7.

2-[(Ethoxypropyliden)amino]-3-cyano-4-(*p***-chlorophenyl)-4***H***-naphto[2,1-***b***]pyran <u>2m</u>. White powder; yield 95%; 0.36 g; mp 92 °C; IR (v_{max}, cm⁻¹) 2203 (C=N), 1652 (C=N). ¹H NMR (CDCl₃, 300 MHz) \delta_{\rm H}, ppm: 1.20 (t, ³***J***= 7.5 Hz, 3H, CH₂CH₃), 1.36 (t, ³***J***= 7.5 Hz, 3H, OCH₂CH₃), 2.39 (q, ³***J***= 7.5 Hz, 2H, CH₂CH₃), 4.31 (q, ³***J***= 7.5 Hz, 2H, OCH₂CH₃), 5.32 (s, 1H, H₄), 7.17-7.84 (m, 11H, Ar-H); ¹³C NMR (CDCl₃, 75 MHz) \delta_{\rm C}, ppm: 10.5, 13.9, 25.6, 29.8, 40.0, 63.8, 76.3, 113.4, 117.1, 118.6, 123.6, 125.3, 127.4, 128.7 (2C), 128.8, 129.2, 130.1, 130.5, 131.5, 133.1, 142.3, 147.9, 159.8, 171.9.**

2-[(Ethoxypropyliden)amino]-3-cyano-4-(*o,p*-dimethoxyphenyl)-4*H*-naphto[2,1-*b*]pyran <u>2n</u>. Yellow powder; yield 81%; 0.16 g; mp 52 °C; IR (v_{max} , cm⁻¹) 2203 (C=N), 1655 (C=N). ¹H NMR (CDCl₃, 300 MHz) δ_{H} , ppm: 1.19 (t, ³*J*= 7.5 Hz, 3H, CH₂<u>CH₃</u>), 1.35 (t, ³*J*= 7.5 Hz, 3H, OCH₂<u>CH₃</u>), 2.42 (q, ³*J*= 7.5 Hz, 2H, <u>CH₂CH₃</u>), 3.79 (s, 6H, 2x OCH₃), 4.30 (q, ³*J*= 7.5 Hz, 2H, O<u>CH₂CH₃</u>), 5.29 (s, 1H, H₄), 6.75-7.82 (m, 9H, Ar-H); ¹³C NMR (CDCl₃, 75 MHz) δ_{C} , ppm: 10.8, 14.2, 25.9, 40.5, 56.1, 56.2, 64.1, 77.2, 110.8, 111.7, 114.8, 117.4, 119.2, 120.0, 124.1, 125.5, 127.6, 128.9, 130.1, 131.1, 131.8, 136.8, 148.2, 148.4, 149.6, 159.8, 172.2.

General procedure for the synthesis of 11-aryl-1,12-dihydro-11*H*-naphtopyrano[2,3*d*]pyrimidines <u>3a-k</u>. The method of preparation of these naphtopyranopyrimidines <u>3a-d</u> has already been presented previously by Messaâd and al. (15). Following this typical experiment, compounds <u>3a-d</u> were obtained by refluxing, for 24 h, a solution of imidates <u>2</u> (0.001 mol, 0.4 g) with one equivalent of tosylhydrazine (0.001 mol, 0.2 g) in toluene (30 mL) with the presence of few drops of acetic acid. The solid product which formed was filtered and washed several times with ether. Based on this protocol, we could easily obtain the new compounds <u>3e-k</u>.

11-(*p*-Chlorophenyl)-12-imino-*N*¹-tosylamino-1,12-dihydro-11*H*-naphtopyrano[2,3-

d]pyrimidine <u>3e</u>. White powder; yield 50%; 0.35 g; mp 290-292 °C; IR (v_{max} , cm⁻¹) 1586 and 1644 (C=N). MS (APCI+) m/z (%) = 529 (M+H⁺, 100), 358 (M-NHTs, 4). Anal.Calcd for C₂₈H₂₁ClN₄O₃S (528.5) : C, 63.57; H, 4.00; Cl, 6.70; N, 10.59; S, 6.06 %. Found: C, 63.52; H, 4.15; Cl, 6.53; N, 10.63; S, 5.79 %.

12-Imino-2-methyl-11-(p-methylphenyl)-N¹-tosylamino-1,12-dihydro-11H-

naphtopyrano[2,3-*d*]**pyrimidine** <u>3f</u>. White powder; yield 37%; 0.20 g; mp 281-283 °C; IR (v_{max} , cm⁻¹) 1623 and 1637 (C=N). MS (APCI+) m/z (%) = 523 (M+H⁺, 100), 368 ($C_{23}H_{20}N_4O$, 2), 354 ($C_{22}H_{18}N_4O$, 5). Anal.Calcd for $C_{30}H_{26}N_4O_3S$ (522): C, 68.95; H, 5.01; N, 10.72; S, 6.14 %. Found: C, 68.69; H, 5.30; N, 10.46; S, 5.92 %.

12-Imino-2-methyl-11-(o-methoxyphenyl)-N¹-tosylamino-1,12-dihydro-11H-

naphtopyrano[2,3-*d*]**pyrimidine** <u>3g</u>. White powder; yield 31%; 0.16 g; mp 254-257 °C; IR (v_{max} , cm⁻¹) 1659 and 1679 (C=N). MS (APCI+) m/z (%) = 539 (M+H⁺, 100), 385 ($C_{23}H_{21}N_4O_2$, 2), 216 (M-NHTs, OCH₃ and CH₃, 3). Anal.Calcd for $C_{30}H_{26}N_4O_4S$ (538): C, 66.90; H, 4.87; N, 10.40; S, 6.20 %. Found: C, 66.87; H, 5.02; N, 10.17; S, 6.31 %.

11-(*p*-Chlorophenyl)-2-methyl-*N*¹-tosylamino-1,12-dihydro-11*H*-naphtopyrano[2,3-

d]pyrimidine <u>3h</u>. White powder; yield 20%; 0.08 g; mp 290-292 °C; IR (v_{max} , cm⁻¹) 1632 and 1670 (C=N). MS (APCI+) m/z (%) = 543 (M+H⁺, 100). Anal.Calcd for C₂₉H₂₃ClN₄O₃S (542.5): C, 64.14; H, 4.27; Cl, 6.53; N, 10.32; S, 5.90 %. Found: C, 63.98; H, 4.12; Cl, 6.53; N, 10.24; S, 5.81 %.

2-Ethyl-12-imino-11-(o-methoxyphenyl)-N¹-tosylamino-1,12-dihydro-11H-

naphtopyrano[2,3-*d*]**pyrimidine** <u>3i</u>. White powder; yield 40%; 0.16 g; mp 234-236 °C; IR (v_{max} , cm⁻¹) 1643 and 1578 (C=N). MS (APCI+) m/z (%) = 553 (M+H⁺, 100), 400 (C₂₁H₁₂N₄O₃S, 4), 382 (M-NHTs, 2). Anal.Calcd for C₃₁H₂₈N₄O₄S (552): C, 67.37; H, 5.11; N, 10.14; S, 5.80 %. Found: C, 67.40; H, 5.22; N, 9.98; S, 6.11 %.

11-(*p*-Chlorophenyl)-2-ethyl-12-imino- N^{I} -tosylamino-1,12-dihydro-11*H*-naphtopyrano[2,3*d*]pyrimidine <u>3i</u>. White powder; yield 40%; 0.15 g; mp 258-260 °C; IR (v_{max} , cm⁻¹) 1641 and 1596 (C=N). MS (APCI+) m/z (%) = 557 (M+H⁺, 100), 386 (M-NHTs, 2). Anal.Calcd for C₃₀H₂₅ClN₄O₃S (556.5): C, 64.68; H, 4.52; N, 10.06; S, 5.76 %. Found: C, 64.49; H, 4.65; N, 9.82; S, 5.71 %.

11-(*o*,*p*-Dimethoxyphenyl)-2-ethyl- N^{I} -tosylamino-1,12-dihydro-11*H*-naphtopyrano[2,3*d*]pyrimidine <u>3k</u>. White powder; yield 40%; 0.15 g; mp 274-276 °C; IR (v_{max} , cm⁻¹) 1637 and 1594 (C=N). MS (APCI+) m/z 583 (M+H⁺, 100), 430 (M- (OCH₃)₂C₆H₃ and CH₃, 4), 414 (M- 2xOCH₃, CH₃ and CH₃C₆H₄, 7). Anal.Calcd for C₃₂H₃₀N₄O₅S (582): C, 65.96; H, 5.19; N, 9.62; S, 5.50 %. Found: C, 65.78; H, 4.95; N, 9.53; S, 5.36 %.

General procedure for the synthesis of 14-aryl-14*H*-naphto[2,1-*b*]pyrano[3,2*e*][1,2,4]triazolo[1,5-*c*]pyrimidines <u>5a-g</u>. A solution of compounds 3 (0.01 mmol, 0.5g) was treated with an excess of triethyl orthoformate (5 mL). The mixture was stirred under reflux for 48 h. After cooling, the white solid obtained, was filtered, washed and dried to obtain compounds **5a-g**.

14-Phenyl-14*H***-naphto**[**2**,1-*b*]**pyrano**[**3**,2-*e*][**1**,2,4]**triazolo**[**1**,5-*c*]**pyrimidine** <u>5a</u>. Yield 30%; 0.15 g; mp 278-280 °C; IR (v_{max} , cm⁻¹) 1617 and 1633 (C=N). ¹H NMR (CDCl₃, 300 MHz) δ_{H} , ppm: 6.35 (s, 1H, H₁₄), 7.06-8.10 (m, 11H, Ar-H), 8.65 (s, 1H, H₂), 9.67 (s, 1H, H₅); ¹³C NMR (CDCl₃, 75 MHz) δ_{C} , ppm: 37.1, 102.8, 114.9, 117.5, 123.5, 125.2, 127.0, 127.4, 128.3 (2C), 128.5 (2C), 128.7, 130.0, 130.3, 131.2, 140.5, 143.1, 148.0, 151.9, 153.0, 156.6; MS (APCI+) m/z (%) = 350 (M^{+ +}, 24), 273 (M-C₆H₅, 100).

14-(*o***-Methoxyphenyl)-14***H***-naphto[2,1-***b***]pyrano[3,2-***e***][1,2,4]triazolo[1,5-***c***]pyrimidine <u>5b</u>. Yield 45%; 0.21 g; mp 266-268 °C; IR (v_{max}, cm⁻¹) 1617 and 1632 (C=N). ¹H NMR (CDCl₃, 300 MHz) \delta_{H}, ppm: 3.89 (s, 3H, OCH₃), 6.64 (s, 1H, H₁₄), 6.80-8.26 (m, 10H, Ar-H), 8.30 (s, 1H, H₂), 9.14 (s, 1H, H₅); ¹³C NMR (CDCl₃, 75 MHz) \delta_{C}, ppm: 33.3, 56.1, 103.5, 112.0, 115.5, 117.6, 121.1, 123.7, 125.1, 127.3, 128.7, 128.9, 129.6, 131.0, 131.2, 131.5, 131.6, 138.5, 148.7, 152.9, 154.8, 156.9, 156.9; MS (APCI+) m/z (%) = 380 (M^{+ +}, 65), 322 (C₂₁H₁₂N₃O, 34), 273 (M-OCH₃C₆H₄, 100). Anal. Calcd for C₂₃H₁₆N₄O₂ (380) : C, 72.62; H, 4.24; N, 14.73 %. Found: C, 72.49; H, 4.52; N, 14.55 %.**

14-(*p***-Chlorophenyl)-14***H***-naphto[2,1-***b***]pyrano[3,2-***e***][1,2,4]triazolo[1,5-***c***]pyrimidine <u>5c</u>. Yield 37%; 0.18 g; mp 245-247°C. ¹H NMR (CDCl₃, 500 MHz) \delta_{\rm H}, ppm: 6.38 (s, 1H, H₁₄), 7.26-8.07 (m, 10H, Ar-H), 8.66 (s, 1H, H₂), 9.68 (s, 1H, H₅); ¹³C NMR (CDCl₃, 125 MHz) \delta_{\rm C}, ppm: 36.5, 102.2, 114.3, 117.6, 123.5, 125.3, 127.5, 128.5 (2C), 128.7, 130.2 (2C), 130.2 (2C), 131.2, 131.6, 140.6, 142.0, 148.0, 151.8, 153.0, 156.6; MS (APCI+) m/z (%) = 384 (M⁺⁺, 21), 273 (M-ClC₆H₅, 100).**

5-Methyl-14-(*p*-methylphenyl)-14*H*-naphto[2,1-*b*]pyrano[3,2-*e*][1,2,4]triazolo[1,5*c*]pyrimidine <u>5d</u>. Yield 37%; 0.19 g; mp 220-223 °C; IR (v_{max} , cm⁻¹) 1620 and 1633 (C=N). ¹H NMR (CDCl₃, 300 MHz) δ_{H} , ppm: 2.19 (s, 3H, CH₃), 2.96 (s, 3H, CH₃), 6.33 (s, 1H, H₁₄), 7.00-8.01 (m, 10H, Ar-H), 8.34 (s, 1H, H₂); ¹³C NMR (CDCl₃, 75 MHz) δ_{C} , ppm: 19.5, 20.9, 37.3, 101.7, 115.2, 117.6, 123.4, 125.0, 127.3, 128.1 (2C), 128.5, 129.3 (2C), 129.7, 130.9, 131.5, 136.8, 140.0, 148.6, 149.1, 152.7, 153.3, 155.5; MS (APCI+) m/z (%) = 379 (M⁺⁺, 100), 288 (M-CH₃C₆H₄, 23), 246 (C₁₅H₈N₃O, 90). Anal. Calcd for C₂₄H₁₈N₄O (378) : C, 76.17; H, 4.79; N, 14.81 %. Found: C, 76.28; H, 4.80; N, 14.59 %.

14-(o-Methoxyphenyl)-5-methyl-14H-naphto[2,1-b]pyrano[3,2-e][1,2,4]triazolo[1,5-

c]pyrimidine <u>5e</u>. Yield 60%; 0.31 g; mp 249-251 °C; IR (v_{max} , cm⁻¹) 1619 and 1635 (C=N). ¹H NMR (CDCl₃, 300 MHz) δ_{H} , ppm: 2.86 (s, 3H, CH₃), 3.79 (s, 3H, OCH₃), 6.47 (s, 1H, H₁₄), 6.77-8.23 (m, 10H, Ar-H), 8.51 (s, 1H, H₂); ¹³C NMR (CDCl₃, 75 MHz) δ_{C} , ppm: 19.2, 32.3, 55.9, 99.8, 112.1, 115.2, 117.4, 120.6, 123.2, 124.8, 127.1, 128.4, 128.5, 129.3, 130.5, 130.7, 130.8, 131.4, 148.1, 149.3, 152.0, 153.1, 155.7, 156.3; MS (APCI+) m/z (%) = 394 (M⁺⁺, 75), 336 (M-OCH₃ and NCH, 35), 287(M-OCH₃C₆H₄, 100).

5-Ethyl-14-(p-chlorophenyl)-14H-naphto[2,1-b]pyrano[3,2-e][1,2,4]triazolo[1,5-

c]pyrimidine <u>5f</u>. Yield 40%; 0.19 g; mp 204-206 °C; IR (v_{max} , cm⁻¹) 1616 and 1633 (C=N). ¹H NMR (CDCl₃, 300 MHz) δ_{H} , ppm: 1.51 (t, ³*J*= 7.0 Hz, 3H, CH₂CH₃), 3.33 (q, ³*J*= 7.0Hz, 2H, <u>CH</u>₂CH₃), 6.34 (s, 1H, H₁₄), 7.16-7.92 (m, 10H, Ar-H), 8.33 (s, 1H, H₂); ¹³C NMR (CDCl₃, 75 MHz) δ_{C} , ppm: 9.8, 25.9, 37.1, 100.8, 114.5, 117.6, 123.3, 125.2, 127.4, 128.7, 128.7 (2C), 129.7 (2C), 130.0, 130.7, 131.5, 132.9, 141.3, 148.7, 152.6, 153.4, 153.5, 155.3; MS (APCI+) m/z (%) = 412 (M⁺⁻, 15), 301(M-ClC₆H₄, 100), 286 (M-ClC₆H₄ and CH₃, 7). Anal. Calcd for C₂₄H₁₇ClN₄O (412.5) : C, 69.82; H, 4.15; N, 13.57 %. Found: C, 69.58; H, 4.45; N, 13.28 %.

5-Ethyl-14-(o-methoxyphenyl)-14H-naphto[2,1-b]pyrano[3,2-e][1,2,4]triazolo[1,5-

c]pyrimidine <u>5g</u>. Yield 50%; 0.24 g; mp 252-254 °C. ¹H NMR (CDCl₃, 300 MHz) $\delta_{\rm H}$, ppm: 1.38 (t, ³*J*= 7.2 Hz, 3H, CH₂CH₃), 3.30 (q, ³*J*= 7.2 Hz, 2H, <u>CH</u>₂CH₃), 3.82 (s, 3H, OCH₃), 6.56 (s, 1H, H₁₄), 6.79-8.22 (m, 10H, Ar-H), 8.54 (s, 1H, H₂); ¹³C NMR (CDCl₃, 75 MHz) $\delta_{\rm C}$, ppm: 9.3, 25.1, 32.2, 56.0, 99.8, 112.2, 115.3, 117.5, 120.7, 123.2, 124.8, 127.1, 128.4, 128.6, 129.4, 130.5, 130.7, 130.9, 131.5, 148.2, 152.1, 152.9, 153.4, 155.7, 156.3; MS (APCI+) m/z (%) = 408 (M^{+ -}, 71), 350 (M-OCH₃ and NCH, 35), 301 (M-OCH₃C₆H₄, 100), 286 (M-OCH₃C₆H₄ and CH₃, 11).

Conclusion

To sum up, in this work we have reported the synthesis of a number of new 14-aryl-14*H*-naphto[2,1-*b*] pyrano[3,2-*e*][1,2,4]triazolo[1,5-*c*]pyrimidines **5** by reacting an excess of triethyl orthoformate with N^{l} -tosylamino-11-aryl-1,12-dihydro-11*H*-naphtopyrano[2,3-*d*]pyrimidines **3**, readily available in moderate yields from imidates **2** and tosylhydrazine.

Acknowledgements

The authors acknowledge the Ministry of Higher Education, Scientific Research and Technology in Tunisia for their financial support.

References

- 1. M. Isloor, B. Kalluraya, P. Shetty. Eur. J. Med. Chem. 44, 3784-378, (2009).
- 2. R. Kumar, R. R. Nair, S. S. Dhiman, J. Sharma, O. Prakash. *Eur. J. Med. Chem.* 44, 2260-2264, (2009).

- 3. F. Chabchoub, M. Messaâd, H. Ben Mansour, L. Ghdira, M. Salem. *Eur. J. Med. Chem.* **42**, 715-718, (2007).
- 4. L. Savini, L. Chiasserini, C. Pellerano, W. Filippelli, G. Falcone. *Il Farmaco*, **56**, 939-945, (2001).
- 5. T. C. Johnson, T. P. Martin, R. K. Mann, M. A. Pobanz. *Bioorg. Med. Chem.* 17, 4230-4240, (2009).
- Kossentini, M. Ben Mosbah, F. Chabchoub, Y. Le Bigot, M. Salem. Phys. Chem. News, 5, 115-120, (2002).
- 7. F. Allouche, F. Chabchoub, L. C. Ghdira, B. Ben Hassine, M. Salem. *Heterocyclic Commun.* 9, 401-404, (2003).
- 8. M. Ben Mosbah, A. Rekik, M. Kossentini, M. Salem. C. R. Chimie, 6, 445-450, (2003).
- 9. H. Chouaieb, M. Ben Mosbah, M. Kossentini and M. Salem. *Synth. Commun.* **33**, 3861-3868, (2003).
- 10. F. Allouche, F. Chabchoub, B. Ben Hassine and M. Salem. *Heterocyclic Commun.* 10, 63-66, (2004).
- 11. M. Ben Mosbah, H. Chouaieb, M. Kossentini, M. Salem. *Phosphorus Sulfur and Silicon*, **179**, 2497-2502, (2004).
- 12. F. Chabchoub, A. Rekik, M. Salem. Synth. Commun. 35, 2467-2473, (2005).
- 13. M. Kossentini, A. Rekik, M. Salem. Phosphorus Sulfur and Silicon, 181, 427-434, (2006).
- 14. M. Messaâd, F. Chabchoub, M. Salem. Heterocyclic Commun. 9, 401-404, (2005).
- 15. M. Messaâd, F. Chabchoub, M. Salem. Phosphorus, Sulfur and Silicon, 181, 1-6, (2006).