Heterocyclic Letters Vol. 15/No.4/671-674/August-October/2025 ISSN: (print) 2231–3087/(online) 2230-9632

CODEN: HLEEAI http://heteroletters.org

GRINDSTONE CHEMISTRY: ACID-CATALYZED FACILE SYNTHESIS OF COUMARINS

M. Amin Mir,¹ Ram Naresh Yadav², Somdatta Mukherjee*³, Subhendu N. Ganguli*³, and Bimal Krishna Banik*¹

¹Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Deanship of Research, Prince Mohammad Bin Fahd University, Al Khobar 31952, Kingdom of Saudi Arabia; ²Department of Chemistry, Faculty of Engineering & Technology, VBS Purvanchal University, Jaunpur-222003 (U.P) India; ³Department of Chemistry, Chemical Biology, and Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA; bimalbanik10@gmail.com

Abstract: Mild acid-catalyzed Pechmann reaction using Grindstone Chemistry is used as an efficient and rapid method for the condensation of a phenol with a beta-keto ester for the facile synthesis of coumarin. The reaction proceeds under solventless conditions, affording a high yield of the product. This approach works well with various phenols and beta-keto esters.

Keywords: Phenols, Beta-keto esters, Grindstone chemistry, Coumarins

Introduction:

Coumarins have diverse biological activities. The Peachmann reaction is widely used for the preparation of coumarins. This reaction describes a process in which a phenol reacts with a beta-keto ester in the presence of strong sulphuric acid and produces coumarin.

In recent years, it has been discovered that many reactions can be performed successfully in the absence of a solvent. Moreover, reactions can be conducted rapidly by Grindstone chemistry which involves frictions among the reactants. We report herein a new solventless Peachmann reaction for the synthesis of coumarins using Grindstone chemistry.

Results and Discussion:

A chemical reaction without solvent minimizes toxicity and reduces pollution of the environment. Many researchers have demonstrated green methods such as sonochemical³, microwave irradiation⁴, and mechanochemistry⁵ for the preparation of diverse compounds. Importantly, chemical reaction is performed by frictional force following mechanochemistry. During the course of our research on sustainable green chemistry, synthesis of coumarins following mechanochemistry was conducted.

Diverse resorcinol derivatives and beta-keto-esters were used for the preparation of coumarins with great success (**Scheme 1**). Cyclic beta-keto-esters produced products with lower yields (about 80%) compared to the yield with linear beta-keto-esters (about 90%). Bismuth nitrate

and p-toulenesulfonic acid were proven to be excellent acid promoters for this reaction (**Table 1**). A few other acidic inorganic salts and organic acids were used for this purpose. For example, calcium nitrate, bismuth sulphate, bismuth iodide, ferric chloride, copper nitrate and magnesium sulphate were examined. However, bismuth nitrate was the most efficient. Acetic acid, benzoic acid and citric acid were not effective.

Bismuth nitrate can liberate nitric acid in the reaction media due to high friction. It can also coordinate with the dicarbonyl compound using its vacant d-orbital. This type of coordination, in principle can promote the nucleophilic attack by the phenol. It seems p-toluenesulfonic acid promotes this reaction as well.

Scheme 1: Synthesis of coumarins by Grindstone method in the presence of bismuth nitrate or p-toulenesulfonic acid.

Compounds with two or three phenolic groups were used for this investigation with success. Cyclic or acyclic beta-keto esters were effective (**Table 1**).

Table 1: Synthesis of Coumarins by Grindstone Method

Entry	Phenols	Beta-Keto Ester	Product	Yield (%)
1	НООН	OEt	HO CH ₃	94
2	НООН	CO ₂ Et	НООН	81
3	НООН	C ₂ H ₅ OOEt	HO C ₂ H ₅	96
4	НООН	C ₆ H ₅ OEt	HO O O O C _e H ₅	92
5	НООН	OEt	HO OH CH ₃	86

Experimental:

Phenol, beta-keto ester and catalytic amounts of bismuth nitrate (or p-toluenesulfonic acid) were ground in a mortar and pestle. Specifically, resorcinol (25 mmol), ethyl acetoacetate (25 mmol) and p-toluenesulfonic acid (200 mg) [or bismuth nitrate (200 mg)] was ground for 15 minutes with a mortar and pestle. The reaction mixture became thicker and the temperature of the reaction mixture went up by a few degrees in the beginning. The reaction materials were stored for 30 minutes at room temperature. Water (100 mL) was added to the reaction mixture and stirred for 10 minutes. The resultant solid product was filtered, washed with water (10 mL) and dried. The white solid was crystallized from ethanol and it was identified as 7-hyddroxy-4-methylcoumarin (mp 185-186°C).

Conclusions:

In summary, we have demonstrated a solvent-free Peachmann reaction for the synthesis of coumarins using catalytic amounts of bismuth nitrate or p-toluenesulfonic acid in a mortar-pestle. This simple procedure can be extended for the preparation of diverse organic compounds.

Acknowledgment:

SG acknowledges the infrastructural support provided by the Department of Chemistry at Stevens Institute of Technology.

Authors' Contributions

The final form of the manuscript was appraised by every author.

Human and Animal Rights

Not applicable.

References:

- 1. Majid M. Heravi, M. M.; Khaghaninejad S.; Mostofi M. "Chapter One Pechmann Reaction in the Synthesis of Coumarin Derivatives", *Advances In Heterocyclic Chemistry*, 2014, **112**, **1-50**.
- 2. Banerjee, M.; Padmini C.; Panjikar, P. C.; Das, D.; ShrIyer, S.; Bhosle; Chatterjee, A. "Grindstone Chemistry: A "Green" Approach for the Synthesis and Derivatization of Heterocycles", *Tetrahedron*, **2022**, 112, 132753.
- 3. Chatel, G. "How Sonochemistry Contributes to Green Chemistry?" *Ultrasonics Sonochemistry*, **2018**, 40, 117-122.
- 4. (a) Banik, B. K.; Barakat, K. J.; Wagle, D. R.; Manhas, M. S.; Bose, A. K. Microwave-Assisted Rapid and Simplified Hydrogenation, *J. Org. Chem.*, **1999**, 64, 5746-5753; (b) Banik,

B. K. Banik et al. / Heterocyclic Letters Vol. 15/No.4/671-674/August-October/2025

- I.; Yadav, R. N.; Becker, F. F.; Banik, B. K. "Bismuth Nitrate-Induced Microwave-Mediated Deglycosylation of O-Glycosides: Synthesis of Enantiopure 3-Hydroxy β -Lactams", *J. Ind. Chem. Soc.*, **2018**, 95, 1373-1376.
- 5. Do, J. L.; Friscic, T. "Mechanochemistry: A Force of Synthesis" ACS Cent. Sci. 2017, 3, 13-19.

Received on October 25, 2025.