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ABSTRACT: 

The present study describes a facile one-pot multicomponent protocol for the synthesis of 

series of pyranopyrazoles from ethyl acetoacetate, phenyl hydrazine, malononitrile and aryl 

aldehydes using core shell NiO-Co3O4@CuO as nanocatalyst. The structure identification of 

the catalyst by spectral techniques including FT-IR, UV-DRS, XRD and SEM analysis. The 

pyranopyrazoles derivatives were synthesized under solvent-free conditions using NiO-

Co3O4@CuO as heterogenous catalyst. Interesting advantages this protocol is reaction 

proceeded smoothly with cost effective and environmentally friendly catalyst, high purity and 

yields (up to 96%) of product along with the retention of catalytic activity up to four cycles. 

KEY WORD:   Core shell NiO-Co3O4@CuO, 1,4-dihydropyrano[2,3-c] pyrazole, solvent 

free 

INTRODUCTION: 

In recent years, one of the fundamental research objectives in organic synthesis is use of 

heterogeneous nanostructures. Various research groups around the world are intrigued the 

advance science fields, nanoscience and nanotechnology. These fields have provided one of 

the most important applications, production and fabrication of nano catalysts i-iv. This material 

is highly advantageous in organic synthesis. The development of nanocatalytic systems have 

served attracted sustainable, efficient, and selective chemical transformations because of their 

ability to raise rates of chemical reactions, promote yields and reusability after easy 

recoverability process v-viii.  

Due to changeable oxidation states transition metal oxides measured as potential materials for 

catalysis. Catalytic properties of nanoscale transition metal oxides are more advanced than its 

bulk equivalents because of their small size and high surface area ix-xi. 

Among the oxides of transition metals, because of potential p type semiconductors and the 

narrow band gap (1.2eV) Copper Oxide is a material which has many applications in nano 
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scale such as in gas sensor xii, field emission xiii-xiv, antibacterial and antioxidant xv-xvi and 

reaction catalyst xvii-xix. Environment‐friendly and quite economical copper‐based 

nanoparticles have been broadly discovered as highly selective catalysts in C−C and C‐

heteroatom bond forming reactions xx.  

The core shell formation with CuO leading to superiority in their properties like dimensional, 

optical, electronic and surface area which made desirable for many applications xxi-xxii. NiO 

and Co3O4are the promising materials in formation of core shell nanostructure xxiii-xxvi. 

one-pot multicomponent reactions are significant approaches over traditional reaction. These 

reactions follow ideologies of green chemistry. Hence design stepwise cost saving operation, 

no need of intermediate isolation, easy separation of product, and minimized time xxvii. During 

the last few years, synthetic organic chemists are used the one-pot multicomponent reactions 

for synthesis of functionalized and fused heterocyclic structural scaffolds xxviii-xxix. Between 

the different heterocyclic molecules, oxygen- and nitrogen containing fused ring heterocycles 

1,4-dihydropyrano[2,3-c] pyrazole display important role as pharmacologically and 

biologically active compound and an interesting moiety in medicinal chemistry xxx-iii 

Based on the above description, we sought to find an effective one-pot multi-component 

synthesis of 1,4-dihydropyrano [2,3-c] pyrazole under solvent-free conditions catalyzed by 

core shell nanostructure. For this we synthesized noble, recyclable and cost-effective 

nanoscale heterogeneous solid catalysts, core shell NiO-Co3O4@CuO nanoplates. The present 

investigation not only describes a facile approach for synthesis of 1,4-dihydropyrano[2,3-c] 

pyrazole but also demonstrate the utilization of NiO-Co3O4@CuO nanoplates as an effective 

catalyst. The synthesized catalyst would be beneficial for the further development of green 

method in organic synthesis. 

EXPERIMENT: 

The chemicals used are copper nitrate (Cu (NO3)2.3H2O), nickel nitrate (Ni (NO3)2.6H2O), 

cobalt nitrate (Co (NO3)2.6H2O), Sodium hydroxide (NaOH), Double distilled water (DDW) 

was use as a solvent in all the experiments, phenyl hydrazine, ethyl acetoacetate, Malononitrile 

and aldehydes were used without further purification. 

Preparation of CuO Nanoplates - 

The CuO nanoplates were synthesized by coprecipitation method using copper nitrate                        

(Cu (NO3)2.3H2O), (1M) used as a precursor and triton as a surfactant was dissolved in 100ml 

double distilled water. The sodium hydroxide (0.1M) was slowly added drop wise under 

continuous stirring. The blue colored precipitate of copper nitrate was obtained. The mixture 

was stirred for 3 hours at 800C. The precipitate obtained was filtered and washed with double 

distilled water. The washed precipitate was dried at 1000C for 12 hours. The dried precipitate 

was calcined at 4500C for 5 hours. 

Preparation of NiO-Co3O4@CuO core shell nanoplates 

The NiO- Co3O4@CuO core shell nano plate was obtained by impregnation method. The 

method involves loading aqueous solution of stoichiometric amount of nickel nitrate (Ni 

(NO3)2.6H2O), cobalt nitrate (Co (NO3)2.6H2O) on prepared CuO Nano plates. The mixture 

obtained was refluxed at 1100C for 12 hours then filtered and washed with double distilled 

water. The product obtained was dried at 1000C in the oven and calcined at 7500C for 4 hours 

in the air. The synthesized catalyst was characterized by UV DRS, FT-IR, XRD, SEM 

techniques 

General procedure for preparation of 6-amino-3-methyl-1,4-diphenyl-1,4-

dihydropyrano[2,3-c] pyrazole-5-carbonitrile 

A mixture of aldehyde (1.5mmol), malononitrile (2mmol), Phenyl hydrazine (2mmol), ethyl 

acetoacetate (2mmol) and catalyst (0.5mmol) stirred at 1000C for appropriate time. The 

progress and completion of reaction was monitored by TLC. After completion of reaction, the 
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mixture was cooled to room temperature. The mixture was poured in cold water. The solid 

separated was filtered by suction to afford crude product. The obtained solid was crystallized 

from ethanol to get the desired compound in pure form. The structure of all products was 

confirmed by using physical and spectroscopic data such as 1HNMR. 

 
Scheme 1: Synthesis of 1,4-dihydropyrano [2,3-c] pyrazole 

 

RESULT AND DISCUSSION: 

UV– DRS absorption spectrum of the synthesized NiO–Co3O4@CuO core shell Nanoplates 

recorded in the range 200−1000 nm are shown in Fig. 1 Spectra reveal blue shifted band at 

245, 320 and 380-600 nm confirm the formation of composites.  

 

 

 

 
 

Figure 1. UV-DRS spectrum of NiO–Co3O4@CuO core shell Nanoplates. 

 

FT-IR spectrum of synthesized NiO–Co3O4@CuO was taken in the region of 400-4000 cm-1 

and is given in Fig.2 FT-IR spectrum confirming the formation of NiO– Co3O4@CuO 

nanoplates as it shows strong band at around 450.30cm-1 is ascribed to the representative 

stretching vibrations of Cu-O bond. The peak at 539.97cm-1 was attributed to the stretching 

vibration of Ni–O bond and the band at 630.27cm-1 was assigned to the stretching vibrations 

of Co–O bond. 
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Figure 2. FT-IR spectrum of NiO–Co3O4@CuO core shell Nanoplates. 

In XRD analysis Fig.3 the diffraction peaks of NiO–Co3O4@CuO core shell nanoplates. The 

formation of CuO was confirmed by the XRD pattern show peaks at 33.06, 36.28, 54.06, 59.8, 

67.98 and 79.76 of CuO (JCPDS card No.89–5899). Peaks at 37.88,62.96.73.32,76.76 of NiO 

(JCPDS No. 44-1159). Peaks at 31.90, 32.24, 49.02 and 57.98 of Co3O4 (JCPDS card No: 78-

1970). No extra peak is observed which confirms the purity of product. 

 
Figure 3. XRD pattern of NiO–Co3O4@CuO core shell nanoplates 

 

The surface morphology of NiO–Co3O4@CuO core shell were analyzed by SEM analysis as  

shown in Fig.4 SEM photomicrographs shows the catalyst have agglomerated plate-like  

 

 

 

 

 

 

 

 

 

 

 

Figure 4. SEM image of NiO–Co3O4@CuO core shell nanoplates 
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morphology and the average particle sizes may be varied from 22 to 65 nm. 

The catalytic performance of NiO-Co3O4@CuO nanocomposite catalyst was measured by 

One-pot multi-component condensation reaction of 4-fluro benzaldehyde, malononitrile, 

Phenyl hydrazine and ethyl acetoacetate. In order to get maximum conversion and yield of the 

product, we examined reaction parameters such as the reaction temperature, reaction time, 

amount of catalyst and effect of solvent. 

To check the effectiveness of NiO-Co3O4@CuO we tried synthesized CuO, NiO and Co3O4 

independently for condensation reaction of aldehyde. CuO gave good yield but required more 

time as compared to modified NiO-Co3O4@CuO catalyst summarized in Table 1. To optimize 

amount of catalyst required for condition we tried various mole equivalent of the catalyst. It 

was found that when the reaction was carried out with 0.5 mol equivalent the yield was found 

95% (Table 2.). The active sites of catalyst are blocked due to the adsorption of product over 

surface area of catalyst, hence further increased in amount of catalyst was decreased the % 

yield. At 600C temperature maximum yield was found Table 3. 

 

Table 1. Effect of catalytic performance on the synthesis of 1,4-dihydropyrano [2,3-c] 

pyrazole 

 

 

 

Table 2. Effect of mole percentage of NiO-Co3O4 @CuO. 

 

 

 

 

 

 

 

 

 

 

Table 3. Effect of temperature on the synthesis of 1,4-dihydropyrano [2,3-c] pyrazole 

 

Entry Temperature(0C) Time(min) Yield (%) 

1 40 15 50 

2 50 15 69 

3 60 10 95 

4 80 20 43 

5 100 30 41 

 

Entry  Catalyst  Time (min)  Yield (%) 

1  Without catalyst 160 Reaction 

incomplete 

2  CuO 30 76 

3  NiO 25 73 

4  Co3O4 40 61 

5  NiO- Co3O4 @CuO 10 97 

Entry Amount of catalyst(mol) Time(min) Yield (%) 

1 0.1 35 65 

2 0.3 30 76 

3 0.4 15 82 

4 0.5 10 95 

5 0.8 10 82 
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After optimizing the reaction conditions, we have investigated the applicability of this 

synthetic methodology for 1,4-dihydropyrano [2,3-c] pyrazole derivatives with series of 

reaction of ethyl acetoacetate(2mmol), phenyl hydrazine (2mmol), malononitrile (2mmol) and 

a wide range of structurally diverse aldehyde (1.5mmol) were treated in presence of NiO-

Co3O4@CuO at 600C.Almost in all cases desired product was obtained in good to excellent 

yield Table 4. 

 

Table 4. Synthesis of different of 1,4-dihydropyrano [2,3-c] pyrazole derivatives 

catalyzed by NiO-Co3O4 @CuO. 

Entry R group Time (min) Yield (%) MP (0C) 

(Observed) 

a H 15 88 172-174 

b 4-F 10 95 175-177 

c 4-Cl 15 92 178-180 

d 4-OH 05 94 213-214 

e 4-Me 20 89 175-177 

f 3-NO2 10 93 187-189 

g 4-OMe 15 91 172-173 

 

To explore the catalyst reusability, the separated core shell NiO-Co3O4@CuO from the model 

reaction washed with alcohol and dried in the oven at 1100C for 3h. This activated catalyst 

reused further and showed insignificant loss of the catalytic activity till 4th reaction cycle 

which indicate cost effectivity of synthesized catalyst. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Reusability of catalyst in synthesis of 1,4-dihydropyrano [2,3-c] pyrazole 

 

CONCLUSION: 

In conclusion, a feasible method was proposed to prepare a Core shell NiO-Co3O4@CuO 

nanoplates. Then, characterization of synthesized catalysts was carried out by several 

techniques such as UV-DRS, FT-IR, XRD, SEM. we have demonstrated that Core shell NiO-

Co3O4@CuO nanoplates is novel, recoverable and cost-effective nanoscale heterogeneous 

solid catalysts for one-pot multi-component solvent free synthesis of 1,4-dihydropyrano [2,3-

c] pyrazole derivatives. The present study recommends numerous advantages for instance: 

excellent yields, short reaction times, ease of separation of catalyst and environmentally 

benign reaction conditions.  
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SPECTRAL DATA OF PREPARED COMPOUNDS: 

b)6-amino-3-methyl-4-(4-florophenyl)-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazole-5-

carbonitrile 

 1HNMR (400MHz CDCl3): δ (ppm) 1.80 (s, 3H), 4.66 (s, 1H), 4.68(s, NH2), 7.02-7.06 (m, 

2H), 7.21-7.24 (m, 2H), 7.32 (t, 1H), 7.45-7.48 (t, 2H), 7.63-7.65 (t, 2H)  

 

d)6-amino-3-methyl-4-(4-hydroxyphenyl)-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazole-5-

carbonitrile  

 1HNMR (400MHz CDCl3): δ (ppm) 1.79 (s, 3H, CH3), 4.56 (s, 1H), 4.62(s, 2H, NH2),  6.72 

(d, 2H), 7.04 (d, 2H), 7.29-7.33(m, 1H), 7.49 (d, 2H), 7.78 (d, 2H).  

 

e)6-amino-3-methyl-4-(4-methylphenyl)-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazole-5-

carbonitrile  
1HNMR (400MHz CDCl3): δ (ppm) 1.76(s, 3H) 2.25 (s, 3H), 4.57(s, 1H), 4.70 (s, 2H, NH2), 

7.04 (d, 2H), 7.10 (d, 2H), 7.26-7.29(m, 1H), 7.41 (d, 2H), 7.75 (d, 2H).  

 

f)6-amino-3-methyl-4-(3-nitrophenyl)-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazole-5- 

carbonitrile  
1HNMR (400MHz CDCl3): δ (ppm) 1.83 (s, 3H), 4.80(s, 1H), 4.96(s, NH2), 7.31 (t, 1H), 7.54 

(t, 2H), 7.72 (t, 1H), 7.89 (m, 3H), 8.12-8.15 (m, 2H). 
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