

Heterocyclic Letters Vol. 14/ No.1/153-168/Nov-Jan/2024 ISSN : (print) 2231–3087 / (online) 2230-9632 CODEN: HLEEAI http://heteroletters.org

# POLYBORATE SUPPORTED PERCHLORIC ACID AS AN EFFICIENT SOLID ACID CATALYST FOR ONE-POTSYNTHESIS OF 12-ARYL-8, 9, 10, 12-TETRAHYDROBENZO[A]XANTHENE-11-ONE DERIVATIVES UNDER SOLVENT-FREE CONDITION

### Dilip Aute<sup>a</sup>, Tushar Bendre<sup>a</sup>, Amol Parhad<sup>a</sup>, Vaishali Murade<sup>a</sup>, Gopinath Shirole<sup>b</sup>, Vijay Kadnor<sup>c</sup>, Bhagwat Uphade<sup>a</sup> and Anil Gadhave<sup>\*a</sup>

<sup>a</sup>Department of Chemistry and Research Centre, Padmashri Vikhe Patil College, Pravaranagar, Dist.Ahmednagar-413736 (MS), India. (Affiliated to Savitribai Phule Pune University, Pune) <sup>b</sup>Department of Chemistry, Arts, Science & Commerce College, Rahata. <sup>c</sup>Department of Chemistry, Arts, Commerce & Science College, Satral. Corresponding author email address: <u>anilgadhave@gmail.com</u>

### **ABSTRACT:**

In the present study, perchloric acid supported on polyborate catalyst was subjected for the synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthene-11-one derivatives by one-pot, three-component reaction between aromatic aldehydes, 2-naphtholanddimedone under solvent-free condition. Superiority of the present protocol includes short reaction time, solvent-free condition, excellent yield, high purity, cleaner reaction profiles, easy set-up, mild reaction condition and straightforward experimental procedures. The prepared perchloric polyborate solid acid catalyst was characterized by analytical techniques like energy dispersive x-ray analysis, x-ray diffraction, field emission scanning electron microscopy and flourier transform infrared spectroscopy analysis.

**KEYWORDS:** Multi-component reaction, perchloric polyborate, solvent-free conditions, green chemistry, xanthenes.

### **INTRODUCTION:**

The multicomponent pathway provide an easy approach for the formation of carbon-carbon bonds, carbon-heteroatom bonds, which occur spontaneously by cyclo addition and condensation that occur sequentially which provides synthetic organic chemistry a systematic and focused orientation<sup>i</sup>. There are many biologically active heterocyclic compounds developed with help of MCRs which are beneficial to the medicinal and pharmaceutical industries<sup>ii</sup>.

Oxygen-containing benzo xanthene heterocyclic derivatives possess potent biological activities, which includes anti-malarial, anti-bacterial, anti-HIV, anti-fungal, algicidal, anti-

cancer, anti-ulcer, anti-inflammatory, antioxidant and therapeutic effect on Alzheimer's and diabetes disease<sup>iii</sup>. They also exhibit specific applications in dyes, laser technologyand photodynamic therapy, used as an antagonist for the paralyzing action of zoxazolamine<sup>iv</sup>. Multicomponent (MCRs) methodology offers new opportunities for researchers to develop numerous pathways for sustainable protocols that reduce the use of toxic substances or eliminate substances that are harmful to human life or the environment<sup>v-vi</sup>.

Present method adheres to the green chemistry principles<sup>vii-ix</sup>. Protocols shorten the reaction period so that the time parameter can be reduced<sup>x-xi</sup>. It is a method of environmental protection that uses safer solvents, non hazardous materials and less energy while reducing environmental contamination<sup>xii-xiv</sup>. The 12-aryl-8, 9, 10,12-tetrahydrobenzo[a]xanthene-11one derivatives are synthesized by different catalytic systems. Among them some includes glucose MNPs<sup>xv</sup>, NiFe<sub>2</sub>O<sub>4</sub>@SiO<sub>2</sub>@amino [Fe<sub>2</sub>O<sub>3</sub>@HAP]-supported dual acidic nanocatalyst<sup>xvi</sup>, TBAHS<sup>xvii</sup>, Lanthanum (III) chloride/chloroacetic acid<sup>xviii</sup>, Ascorbic acid<sup>xix</sup>, Tartaric Acid<sup>xx</sup>, Ionic CSA<sup>xxi</sup>, Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>.18H<sub>2</sub>O<sup>xxii</sup>, KF/CP NPs<sup>xxiii</sup>, Manganese (IV) oxide<sup>xxiv</sup>, SCMNPs@imine@SO<sub>3</sub>H<sup>xxv</sup>, Sulfated Polyborate<sup>xxvi</sup>, PDNES<sup>xxvii</sup>, ZrO<sub>2</sub>-SO<sub>3</sub>H NPs<sup>xxviii</sup>, P<sub>2</sub>O<sub>5</sub><sup>xxxii</sup> Cu(II)Fe<sub>3</sub>O<sub>4</sub>@APTMS-DFX<sup>xxix</sup>, GO-SB-PMo<sup>xxx</sup>, [TMXH]FeCl4<sup>xxxi</sup> Oxide<sup>xxxiii</sup> LAIL@MNP<sup>xxxiv</sup>. CoFe<sub>2</sub>O<sub>4</sub>@OCMC@Cu(BDC)Manganese(IV) Sodium acetate<sup>xxxv</sup>. nanoparticle<sup>xxxvi</sup>, Fe<sub>3</sub>O<sub>4</sub>.SiO<sub>2</sub> NPs<sup>xxxvii</sup>. acid<sup>xxxviii</sup> ZnO Boric NaHSO<sub>4</sub>·SiO<sub>2</sub><sup>xxxix</sup>,[bmim]BF<sub>4</sub><sup>x1</sup>,PEG-400<sup>xli</sup>,Tetrachlorosilane<sup>xlii</sup>,F<sub>3</sub>O<sub>4</sub> NPs<sup>xliii</sup>, PVPP.OTf<sup>xliv</sup>,  $GO/GO-SO_3H^{xlv}$ .

Derivatives of xanthene are used in antiviral therapy<sup>xix</sup>. Rose Bengal act as a dye sensitizers for photodynamic treatment<sup>xx</sup> while pharmacologically active compound such as RO67-4853 and Rhodamine<sup>xxvi</sup> in **Fig 1**. Most of the reported protocols contain acceptable, environmentally benign features but at the same time have some drawbacks, including lack of reagents suitability that follow green chemistry principles, the need for anhydrous and harsh reaction conditions, the use of expensive regents, the use of harmful volatile organic reagents and reports that some protocols require excessive amounts of reagents and catalyst, a lengthy workup procedure, long reaction times and poor yields. Therefore there is still need to develop protocol following green chemistry features.



Figure 1. Some Medicinally important drugs containing xanthenes scaffold

Our earlier study on supported polyborate catalysts served as an efficient green strategy for a variety of multicomponent reactions<sup>xlvi-l</sup>. Catalysts assisted by perchloric acid play a key role in multicomponent organic transformation<sup>li-lii</sup>. In the current work, polyborate supported perchloric acid was synthesized and used as a solid acid catalyst in multicomponent processes with a green approach.

# **EXPERIMENTAL:**

All compounds were purchased from loba and spectrochem and were used exactly as they were received, with no further purification. Ethyl acetate and n-hexane were used as eluting agents in thin layer chromatography on Merck silica jel G<sub>60</sub> F<sub>254</sub> plates. UV-light was used to visualize the thin layer chromatography plates. High resolution mass spectrometry on a waters Q ToF Micromass spectrometer, proton nuclear magnetic resonance spectroscopy, and carbon nuclear magnetic resonance spectroscopy were used to study selected synthesized compounds. The NMR spectra of materials were obtained using a Bruker Avance Neo 500 MHz and 125 MHz frequency NMR spectrometer, SAIF, P.U., with TMS as an internal standard in CDCl<sub>3</sub>. Fourier transform infrared spectra were collected using a Perkin-Elmer 400 FT-IR spectrometer. The SEM and EDAX analysis were recorded on JEOL JSM-6100 Scanning Electron Microscope and X-ray diffraction analysis was performed on (PANalytical X'Pert Pro, X-ray diffractometer). Melting points were measured using EQ 730 equiptronics digital melting points equipment.

# Synthesis of catalyst:

The polyborate was prepared as per reported in our previous work and its supported catalyst formation was proved by spectral techniques FT-IR, SEM, EDS and XRD etc <sup>xlvi</sup>.

# Synthesis of Perchloric Polyborate Catalyst:

Polyborate (20.50 gm) was taken in 100 mL of dry ether. The temperature of the flask was maintained between 10-15°C by stirring the mixture over magnetic stirrer. To this mixture perchloric acid (8.605 gm) was added drop wise over period of 30 min. The resulting reaction mixture was further stirred for 2 hours at room temperature. After completion of stirring the ether solvent was allowed to evaporate and the resulting solid catalyst was washed several times by acetone and dried at room temperature to get solid powder of perchloric polyborate catalyst.

Polyborate +  $HCIO_4$   $\xrightarrow{Ether}$  Polyborate- $HCIO_4$ 

Scheme 1. Preparation of perchloric polyborate acid catalyst

# General synthesis of 2-aryl-8, 9, 10, 12-tetrahydrobenzo[a]xanthene-11-one derivatives

A 50 ml round-bottomed flask mounted in an oil bath under solvent-free condition at 80°C was charged with a mixture of 2-naphthol (1 mmol), substituted aromatic aldehydes (1 mmol) and dimedone (1 mmol). TLC was used to monitor the progress of reaction and ethyl acetate:n-hexane (7:3) as an eluent. To obtain pure products they recrystallized form ethanol. Compounds were characterized by spectral techniques such as FT-IR, NMR and HRMS.



**Scheme 2.** Synthesis of 12-aryl-tetrahydrobenzo[α]xanthene-11-ones derivatives 4 (a-p)

### Characterization data of some synthesized compounds:

9, 9 -Dimethyl- 1 2-phenyl-8, 9, 10, 12-tetrahydrobenzo[a]-xanthen-11-one(4a):

White crystals, m.p. 148-149°C; FT-IR (cm<sup>-1</sup>): 3055, 3025, 3002, 2955, 2884 (C-H), 1650 (C=O), 1596 (C=C), 1373, 1227 (C-O), 1183, 810, 698, 747;<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz,  $\delta$  ppm): 0.93 (s, 3H, CH<sub>3</sub>), 1.08 (s, 3H, CH<sub>3</sub>), 2.20 (dd, 2H, CH<sub>2</sub>), 2.53 (s, 2H, CH<sub>2</sub>), 5.70 (s, 1H, CH), 7.01 (t, 1H, ArH), 7.13 (t, 2H, ArH), 7.29 (m, 4H, ArH), 7.38 (t, 1H, ArH), 7.71 (t, 2H, ArH), 7.97 (d, 1H, ArH);<sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz,  $\delta$  ppm): 27.18, 29.34, 32.28, 34.76, 41.43, 50.93, 114.30, 117.08, 117.74, 123.71, 124.93, 126.28, 127.04, 128.28, 128.43, 128.47, 128.87, 131.44, 131.53, 144.80, 147.78, 163.94, 196.93;M. F: C<sub>25</sub>H<sub>22</sub>O<sub>2</sub>, calculated mass 354.4410, [M<sup>+</sup> + H] = 355.1701.

**12-(2-chlorophenyl)-9, 9-dimethyl-8, 9, 10, 12-tetrahydrobenzo**[*a*]**xanthen-11-one(4b):** white crystals, m.p. 179-180°C,FT-IR (cm<sup>-1</sup>): 3058, 3017, 2947, 2867 (C-H), 1652 (C=O), 1622, 1596 (C=C), 1370, 1228 (C-O), 1180, 835 (C-Cl), 812, 745;<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz,  $\delta$  ppm): 0.98 (s, 3H, CH<sub>3</sub>), 1.11 (s, 3H, CH<sub>3</sub>), 2.20 (dd, 2H, CH<sub>2</sub>), 2.58(s, 2H, CH<sub>2</sub>), 5.98 (s, 1H, CH), 6.95 (t,1H, ArH), 7.02 (t,1H, ArH), 7.24 (t, 3H, ArH), 7.34 (t, 1H, ArH), 7.45 (t, 1H, ArH), 7.72 (t, 2H, ArH), 8.20 (d, 1H, ArH);<sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz,  $\delta$  ppm): 27.13, 29.40, 32.18, 32.98, 41.49, 50.90, 113.47, 117.09, 117.43, 123.97, 124.96, 126.92, 127.15, 127.67, 128.42, 129.14, 130.01, 131.39, 131.66, 131.71, 132.96, 142.19, 147.71, 164.26, 196.75; M. F: C<sub>25</sub>H<sub>21</sub>ClO<sub>2</sub>, calculated mass-388.8860, [M<sup>++</sup> + H] = 389.1371.

**12-(4-bromophenyl)-9, 9-dimethyl-8, 9, 10, 12-tetrahydrobenzo**[*a*]**xanthen-11-one(4g):** White solid, m.p. 185-187°C, FT-IR (cm<sup>-1</sup>): 3062, 2958, 2946, 2896, 2868 (C-H), 1642 (C=O), 1592 (C=C), 1512, 1373, 1222 (C-O), 1172, 836, 754, 661 (C-Br);<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz,  $\delta$  ppm): 0.94 (s, 3H, CH<sub>3</sub>), 1.10 (s, 3H, CH<sub>3</sub>), 2.21 (dd, 2H, CH<sub>2</sub>), 2.54 (s, 2H, CH<sub>2</sub>), 5.66 (s, 1H, CH), 7.20 (t, 2H, ArH), 7.26 (d, 2H, ArH), 7.30 (d, 1H, ArH), 7.35 (t, 1H, ArH), 7.40 (t, 1H, ArH), 7.74 (t, 2H, ArH), 7.88 (d, 1H, ArH);<sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz,  $\delta$  ppm): 27.17, 29.34, 32.27, 34.30, 41.41, 50.87, 76.83, 113.76, 117.00, 117.07, 120.15, 123.47, 125.06, 127.16, 128.53, 129.15, 130.23, 131.23, 131.37, 131.54, 143.80, 147.75, 164.09, 196.88; M. F: C<sub>25</sub>H<sub>21</sub>BrO<sub>2</sub>, calculated mass-433.3370, [M<sup>+-</sup> + H] = 433.0818.

**12-(4-Nitrophenyl)-9, 9-dimethyl-8, 9, 10, 12-tetrahydrobenzo**[*a*]**xanthen-11-one(4h):** White solid; mp 177-178°C,FT-IR (cm<sup>-1</sup>): 3076, 2954, 2892, 2872 (C-H), 1646 (C=O), 1595 (C=C), 1516 (NO<sub>2</sub>), 1376, 1344 (NO<sub>2</sub>), 1223 (C-O), 1181, 830, 748;<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz,  $\delta$  ppm): 0.93 (s, 3H, CH<sub>3</sub>), 1.12 (s, 3H, CH<sub>3</sub>), 2.22 (dd, 2H, CH<sub>2</sub>), 2.58 (s, 2H, CH<sub>2</sub>), 5.80 (s, 1H, CH), 7.34 (d, 1H, ArH), 7.40 (m, 2H, ArH), 7.49 (d, 2H, ArH), 7.78 (d, 3H, ArH), 8.00 (d, 2H, ArH);<sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz,  $\delta$  ppm): 27.07, 29.32, 32.28, 41.42, 50.79, 112.99, 116.05, 117.12, 123.13, 123.64, 125.27, 127.40, 128.69, 129.39, 129.66, 131.04, 131.59, 146.35, 147.80, 151.90, 164.68, 196.78; M. F: C<sub>25</sub>H<sub>21</sub>NO<sub>4</sub>, calculated mass-399.4385, [M<sup>+-</sup> + H] = 400.1594.

**12-(4-Methylphenyl)-9, 9-dimethyl-8, 9, 10, 12-tetrahydrobenzo**[*a*]**xanthen-11-one(4i):** White solid, m.p. 176–178°C, FT-IR (cm<sup>-1</sup>): 3041, 3015, 2950, 2894, 2867 (C-H), 1647 (C=O), 1596 (C=C), 1511, 1371, 1228 (C-O), 812, 753;<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz,  $\delta$  ppm): 0.96 (s, 3H, CH<sub>3</sub>), 1.09 (s, 3H, CH<sub>3</sub>), 2.18 (s, 3H, CH<sub>3</sub>), 2.21 (dd, 2H, CH<sub>2</sub>), 2.54 (s, 2H, CH<sub>2</sub>), 5.66 (s, 1H, CH), 6.95 (d, 2H, ArH), 7.21 (t, 2H, ArH), 7.29 (d, 1H, ArH), 7.34 (t, 1H, 1H), 7.39 (t, 1H, ArH), 7.72 (t, 2H, ArH), 7.99 (d, 1H, ArH);<sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz,  $\delta$  ppm): 21.01, 27.30, 29.29, 32.31, 34.32, 41.44, 50.94, 114.41, 117.06, 117.91, 123.71, 124.87, 126.98, 128.30, 128.39, 128.73, 128.96, 131.45, 131.51, 135.68, 141.88, 147.70, 163.81, 196.97; M. F: C<sub>26</sub>H<sub>24</sub>O<sub>2</sub>, calculated mass-368.4468, [M<sup>+-</sup> + H] = 369.1863.

**12-(4-chlorophenyl)-9, 9-dimethyl-8,9,10,12-tetrahydrobenzo**[*a*]**xanthen-11-one(4m):** White crystals, m.p. 180-181°C; FT-IR (cm<sup>-1</sup>): 3075, 3019, 2952, 2894, 2869 (C-H), 1648 (C=O), 1598 (C=C), 1370, 1227 (C-O), 1183, 751, 835 (C-Cl); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz, δ 156 ppm): 0.95 (s, 3H, CH<sub>3</sub>), 1.09 (s, 3H, CH<sub>3</sub>), 2.22 (dd, 2H, CH<sub>2</sub>, ),2.55 (S, 2H, CH<sub>2</sub>), 5.67 (s, 1H, CH), 7.12 (d, 2H, ArH), 7.25 (t, 2H, Ar-H),7.30 (d, 1H, ArH), 7.37-7.44 (m, 2H, ArH), 7.75 (t, 2H, ArH), 7.89 (d, 1H, ArH);<sup>13</sup>C NMR: (CDCl<sub>3</sub>, 125 MHz,  $\delta$  ppm), 27.15, 29.32, 32.27, 34.20, 41.41, 50.87, 113.84, 117.06, 123.48, 125.04, 127.14, 128.41, 128.50, 129.11, 129.82, 131.23, 131.53, 131.94, 143.26, 147.75, 164.08, 196.90;M. F.: C<sub>25</sub>H<sub>21</sub>ClO<sub>2</sub>, calculated mass 388.886, [M<sup>+.</sup> + H] = 389.1371.

### **RESULTSAND DISCUSSION:**

#### **Characterization of catalyst:**

### FT-IR analysis of perchloric polyborate catalyst

The FT-IR spectrum of catalyst exhibits peak at3215-3746 cm<sup>-1</sup>due to O-H stretching, band at 3215 cm<sup>-1</sup>corresponds to O-H stretching of B-O-H, band at 1451 cm<sup>-1</sup>for B-O stretching and band at 640 cm<sup>-1</sup>indicate O-B-O stretching of polyborate catalyst. The bands at 1193.5 cm<sup>-1</sup> attributed to the asymmetric stretching whereas bands at 806 cm<sup>-1</sup>, 674cm<sup>-1</sup> and 546 cm<sup>-1</sup> were due to the symmetric stretching and rocking vibration of HClO<sub>4</sub><sup>liii</sup>.



Figure 2. FT-IR Spectrum of perchloric polyborate

#### XRD analysis of perchloric polyborate catalyst

Powder XRD pattern of perchloric polyborate catalyst shown significant peaks positioned at  $2\theta=28.15^{\circ}$  which confirms the presence of B–O bonds in the crystalline structure of the perchloric polyborate catalyst. The remaining significant peaks in the range from 32.3 to 64.4 were due to HClO<sub>4</sub> group<sup>liv</sup>.



spectrum of perchloric polyborate catalyst

### EDS analysis of perchloric polyborate catalyst

EDS analysis of the catalyst indicates presence of the expected elements in the perchloric polyborate catalyst which supports its formation.



Figure 4. EDS of perchloric polyborate catalyst

# SEM analysis of perchloric polyborate catalyst

Surface morphology of synthesized catalyst was examined by SEM analysis which highlights crystalline nature of catalyst with different shapes and sizes of the particles.



Figure 5. SEM analysis of perchloric polyborate catalyst

# Catalytic activity study of perchloric polyborate acid catalyst:

The successful synthesis of catalyst motivated us to check its catalytic potential for the multicomponent synthesis of 12-aryl xanthenes using aldehyde, dimedone and  $\beta$ -naphthol. To assess various reaction parameters a model reaction of 4-nitro benzaldehyde, dimedone and  $\beta$ -naphthol was choosen. For any reaction the factors like solvent, amount of catalyst, temperature, time required for completion of reaction are need to evaluated.



Scheme 3. Model reaction of synthesis of 12-aryl-tetrahydrobenzo[a]xanthene-11-ones (4h)

To check the most suitable reaction medium the model reaction was carried out in various solvents as shown in Table 1. The results highlights that among them the solvent-free approach is more suitable for this reaction (Table 1, entry 8).

**Table 1.**Solvent optimization for the synthesis of 12-aryl-8, 9, 10, 12-tetrahydrobenzo[a]xanthene-11-one derivatives

| Entry | Solvent                         | Temperature | Time (min) | Yields <sup>a</sup> (%) |
|-------|---------------------------------|-------------|------------|-------------------------|
| 1     | H <sub>2</sub> O                | reflux      | 30         | 0                       |
| 2     | EtOH                            | reflux      | 30         | 10                      |
| 3     | CH <sub>2</sub> Cl <sub>2</sub> | reflux      | 30         | 30                      |
| 4     | Toluene                         | reflux      | 30         | 25                      |
| 5     | CHCl <sub>3</sub>               | reflux      | 30         | 27                      |
| 6     | DMF                             | 80°C        | 30         | 35                      |
| 7     | Solvent-free                    | 60°C        | 20         | 78                      |
| 8     | Solvent-free                    | 80°C        | 15         | 94                      |
| 9     | Solvent-free                    | 100°C       | 15         | 94                      |

<sup>a</sup>Isolated Yields

In the next part we checked the amount of catalyst essential for the completion of reaction. The results obtained are given in Table 2 which concludes that 75 mg of catalyst is sufficient to carry the reaction with good yield. Further increase in amount of catalyst does not increase the product yield.

**Table2.**Optimization of amount of catalyst amount for the synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthene-11-one derivatives

| Sr. No | Catalyst (gm) | Yield <sup>a</sup> (%) | Time (min) |
|--------|---------------|------------------------|------------|
| 1      | 0             | 0                      | 15         |
| 2      | 0.025         | 55                     | 15         |
| 3      | 0.050         | 63                     | 15         |
| 4      | 0.075         | 94                     | 15         |
| 5      | 0.100         | 94                     | 15         |

<sup>a</sup>Isolated Yields

After this we optimized the time required for the completion of the reaction. We performed the reaction at various time as shown in Table 3. It is found that 15 minutes is the optimum time required for completion of reaction with good yield. Further increase in reaction time does not alter the product yield.

**Table 3.** The optimization of time required for the synthesis of derivatives of 12-aryl-8, 9, 10, 12-tetrahydrobenzo[a]xanthene-11-one derivatives

| Sr. No. | Amount of catalyst (mg) | Time (min) | Yield <sup>a</sup> (%) |
|---------|-------------------------|------------|------------------------|
| 1       | 75                      | 5          | 48                     |
| 2       | 75                      | 10         | 66                     |
| 3       | 75                      | 15         | 94                     |
| 4       | 75                      | 20         | 94                     |

<sup>a</sup>Isolated Yields

All the above result obtained summaries that solvent-free condition with 75 mg of catalyst at 80°C is the most optimum condition for the synthesis of 12-aryl xanthene derivatives. These results promoted us to check the diversity of the optimized protocol for the synthesis of various other derivatives of xanthenes. We performed the reaction of dimedone (1 mmol),  $\beta$ -naphthol (1 mmol) with variously substituted aromatic aldehydes (1 mmol). The aldehydes possess chloro, nitro, methoxy, bromo, methyl, hydroxyl, fluro substituents at ortho, meta or para position. All these aldehyde gave satisfactory product yields. We also used heteroaromatic aldehyde 2-thiophene and 2-furfural which also gives good product yields.

 Table 4. Synthesis of tetrahydrobenzo[a]xanthene-11-ones (4a-p) catalyzed by perchloric polyborate

| Sr.<br>No. | Aldehyde | Products | Time<br>(min) | Yield<br>a,b<br>(%) | <b>M.P.</b> (°C) |                        |
|------------|----------|----------|---------------|---------------------|------------------|------------------------|
|            |          |          |               |                     | Observed         | Reported               |
| 1          | 0 H      | 4a       | 20            | 90                  | 148-149          | 149-151 <sup>xvi</sup> |
| 2          |          | 4b       | 25            | 89                  | 179-180          | 177-179 <sup>xvi</sup> |







### <sup>a</sup>Isolated Yields

<sup>b</sup>reaction with dimedone,  $\beta$ -naphthol and substituted aromatic aldehydes in presence of perchloric polyborate under solvent-free condition at 80°C.

The optimized protocol was compared with the literature reported methods for the synthesis of 12-aryl xanthene derivatives in **Table 5**. The observation is that our reported protocol is superior in term of non-costly and non-toxic solid acid catalyst, solvent-free approach with good product yield.

**Table5.**Comparison of reported methods for the synthesis of tetrahydrobenzo[a]xanthene-11-ones

| Entry | Catalyst/Solvent/Condition                          | Catalyst<br>amount | Temp     | Time<br>(min) | Yield <sup>a</sup> (%)   |
|-------|-----------------------------------------------------|--------------------|----------|---------------|--------------------------|
| 1     | TetrabutylAmmoniumHydrogen Sulphate (TABHS)         | 10 mol %           | 60°C     | 120-300       | 82-90 <sup>xvii</sup>    |
| 2     | Boric Acid /EtOH                                    | 10 mol %           | Reflux   | 120-270       | 77-92 <sup>xxxviii</sup> |
| 3     | NaHSO4·SiO2,CH2Cl2                                  | -                  | Reflux   | 240-420       | 71-86 <sup>xxxix</sup>   |
| 4     | [bmim]BF <sub>4</sub> (0.5 mL),<br>pTSA/ Neat       | (0.1 mmol)         | 80°C     | 120-210       | 84-95 <sup>x1</sup>      |
| 5     | PEG-400 (1 mL)                                      | -                  | 120°C    | 330-450       | 79-90 <sup>xli</sup>     |
| 6     | Tetrachlorosilane / CH <sub>2</sub> Cl <sub>2</sub> | 2.5 mmol           | RT       | 60-210        | 92-98 <sup>xlii</sup>    |
| 7     | F <sub>3</sub> O <sub>4</sub> NPs/Solvent-Free      | 5 mol %            | 90-110°C | 120           | 80-95 <sup>xliii</sup>   |
| 8     | PVPP.OTf / Toluene                                  | 30 mg              | 110°C    | 300-360       | 85-95 <sup>xliv</sup>    |
| 9     | GO/GO-SO <sub>3</sub> H /H <sub>2</sub> O           | 0.02 gm            | 80°C     | 120-180       | 83-96 <sup>xlv</sup>     |
| 10    | Perchloric Polyborate /<br>Solvent-Free             | 0.075 gm           | 80°C     | 15-25         | 83-94                    |

<sup>a</sup>Isolated Yields

# **REACTION MECHANISM:**



Scheme 4.Plausible mechanism for the formation of tetrahydrobenzo[a]xanthene-11-ones

# **CONCLUSION:**

In the present work tetrahydrobenzo[a]xanthene-11-ones were synthesized by one-pot multicomponent reaction between substituted aromatic aldehyde, dimedone and 2-naphthol using perchloric polyborate solid acid catalyst. The advantages of this method include use of non-toxic solid acid catalyst, mild reaction condition, clean reaction profile, solvent-free approach and good product yields. Overall, an operationally simple, environmentally and economically benign process is been reported.

### **ACKNOWLEDGEMENTS:**

The authors express sincere thanks to Management of our education society and Principal of our college for encouragement and providing all necessary facilities. The thanks are also to SAIF, Punjab University, Punjab for providing all required spectral analysis.

### **CONFLICT OF INTERESTS:**

The authors say they have no competing interests.

# **ABBREVIATIONS:**

MCRs = Multicomponent Reactions NR = No Reaction SF= Solvent-Free Reactions FT-IR= Fourier Transform Infrared Spectroscopy <sup>1</sup>H NMR = Proton Nuclear Magnetic Resonance Spectroscopy <sup>13</sup>C NMR= Carbon Nuclear Magnetic Resonance Spectroscopy EDS = Energy Disperse Scanning Electron microscopy SEM= Scanning Electron Microscopy XRD= X-Ray Diffraction HRMS = High-Resolution mass spectrometry TLC = Thin Layer Chromatography **Reference:** 

- i Younus, H. A.; Al-Rashida, M.; Hameed A.; Uroos M.; Salar U.; Rana S.;Khan K.M.; Multicomponent reactions (MCR) in medicinal chemistry: a patent review (2010-2020); Expert. Opin. Ther. Pat.; 2021, **31**(3), 267-289.
- ii Sharma U. K.; Ranjan P.; Van der Eycken E.V.; You S. L.; Sequential and direct multicomponent reaction (MCR)-based dearomatization strategies; Chem. Soc. Rev.; 2020, **49**(23), 8721-8748.
- Ghahsare A. G.; Nazifi Z. S.; Nazifi, S. M. R.; Structure-bioactivity relationship study of xanthene derivatives: abrief review; Curr. Org. Chem.; 2019, 16(8), 1071-1077.
- iv Bedi P.; Gupta R.; Pramanik T.; Synthesis and biological properties of pharmaceutically important xanthones and benzoxanthone analogs: a brief review; Asian. J. Pharm. Clin. Res.; 2018,**11**(2), 12-20.
- v Avila-Ortiz C.G.; Juaristi E.; Novel methodologies for chemical activation in organic synthesis under solvent-free reaction conditions; Molecules.; 2020, **25**(16), 3579, 1-25.
- vi Zangade S.; Patil P.; A review on solvent-free methods in organic synthesis; Curr. Org. Chem.; 2019, **23**(21), 2295-2318.
- vii Hackl K.; Kunz W.; Some aspects of green solvents; C. R. Chim.; 2018, **21**(6), 572-580.
- viii Winterton N.; The green solvent: a critical perspective; Clean. Techn. Environ. Policy.; 2021, 23, 2499-2522.
- ix Cortes-Clerget M.; Yu J.; Kincaid, J. R. A.; Walde P.; Gallou F.; Lipshutz B. H.; Water as the reaction medium in organic chemistry: from our worst enemy to our best friend; Chem. Sci.; 2021,**12**, 4237-4266.
- x Henary M.; Kanand C.; Rotolo L.; Savino B.; Owensa E. A.; Cravotto G.; Benefits and applications of microwave-assisted synthesis of nitrogen containing heterocycles in medicinal chemistry; RSC Adv.; 2020, **10**(24), 14170-14197.
- xi Kumar A.; Kuang Y; Liang Z.; Sun X.; Microwave chemistry, recent advancements, and eco-friendly microwave-assisted synthesis of nano architectures and their applications: a review; Mater. Today Nano.; 2020, **11**, 100076.
- xii Savun-Hekimoglu B.; A review on sonochemistry and its environmental applications; Acoustics.; 2020, **2**(4), 766-775.
- xiii Mohamed M.A.; Sonochemistry (applications of ultrasound in chemical synthesis and reactions): a review part iii; JPRI.; 2019, **31**(6), 1-19.
- Penteado F.; Monti B.; Sancineto L.; Perin G.; Jacob R. G.; Santi C.; Lenardão, E. J.;
   Ultrasound-assisted multicomponent reactions, organometallic and organochalcogen chemistry; Asian J. Org. Chem.; 2018, 7(12), 2368-2385.
- xv Fekri L. Z.; Darya-Laal, A. R.; NiFe<sub>2</sub>O<sub>4</sub>@SiO<sub>2</sub>@amino glucose magnetic nanoparticle as a green, effective and magnetically separable catalyst for the synthesis of xanthene-ones under solvent-free condition; Polycycl Aromat Compd.; 2020, 40(5), 1539-1556.
- xvi Kheirkhah L.; Mamaghani M.; Yahyazadeh A.; Mahmoodi N. O.; Hap-encapsulated  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> supported dual acidic heterogeneous catalyst for highly efficient one-pot synthesis of benzoxanthenones and 3-pyranylindoles; Appl Organometal Chem.; 2018, **32**(2), e4072.

#### A. Gadhav et al. / Heterocyclic Letters Vol. 14/ No.1/153-168/Nov-Jan/2024

- xvii Diwan F.; Mohsin M.; Shaikh M.; Dixit P.; Farooqui M.; Tetrabutyl ammonium hydrogen sulphate (TBAHS) catalyzed convenient and greener synthesis of tetrahydrobenzo[a]xanthene-11-ones; J. Chem. Biol. Interfaces.; 2019, **9**(1), 71-82.
- xviii Pouramiri B.; Shirvani M.; Kermani, E. T. F.; Facile and rapid synthesis of diverse xanthene derivatives using lanthanum(III) chloride/chloroacetic acid as an efficient and reusable catalytic system under solvent-free conditions; J. Serb. Chem. Soc.; 2017, 82(5), 483-493.
- xix Mohamadpour, F.; Ascorbic acid as a natural green, highly efficient and economical catalyst promoted one-pot facile synthesis of 12-aryl-tetrahydrobenzo[ $\alpha$ ]xanthene-11-ones, 1,8-dioxo-octahydroxanthenes and 14-aryl-14H-dibenzo[ $\alpha$ ,j]xanthenes under solvent-free conditions; U.P.B. Sci. Bull.; 2018, **80**(2), 101-116.
- Mohamadpour F.; Maghsoodlou M. T.; Lashkari M.; Heydari R.; Hazeri N.; Green synthesis of polysubstituted quinolines and xanthene derivatives promoted by tartaric acid as a naturally green catalyst under solvent-free conditions; Chem. J. Mold.; 2018, 13(1), 74-86.
- Pelit E.; (±)-CSA catalyzed multicomponent synthesis of indeno naphthopyrans and tetrahydrobenzo[a]xanthen-11-ones under ultrasonic irradiation; CSIJ.; 2017, 20(1), 1-8.
- Mohamadpour F.; Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>.18H<sub>2</sub>O as an efficient and environmentally benign natural catalyst for facile and solvent-free synthesis of xanthene derivatives; J. Appl. Chem. Res.; 2019, 13(2), 66-80.
- xxiii Balou, J.; Khalilzadeh M. A.; Zareyee D.; An efficient and reusable nano catalyst for the synthesis of benzoxanthene and chromene derivatives; Sci. Rep.; 2019,3605, 1-9.
- xxiv Mohamadpour F.; Solvent-free and one-pot facile synthesis of 12-aryltetrahydrobenzo[ $\alpha$ ]xanthene-11-one derivatives promoted by manganese (iv) oxide as efficient catalyst; Trends green chem.; 2017, **3**(1), 1-7.
- xxv Zhou J.; Liu D.; Wu F.; Xiong Y.; Ashraf M. A.; Synthesis of SCMNPs@imine/SO<sub>3</sub>H magnetic nanocatalyst by chlorosulfonic acid as sulfonating agents and their application for the preparation of 12-aryl-8,9,10,12tetrahydrobenzo[a]xanthen-11-one and 1,8-dioxooctahydroxanthene derivatives; Mater. Res.; 2020, 7, 015801.
- xxvi Patil, M. S.; Palav A. V.; Khatri C. K.; Chaturbhuj, G. U.; Rapid, efficient and solvent-free synthesis of (un)symmetrical xanthenes catalyzed by recyclable sulfated polyborate; Tetrahedron Lett.; 2017, **58**, 2859-2864.
- Xxvii Khazaei A.; Rezaei M.; Moosavi-Zare A. R.; Saedniaa S.; Solvent-free Synthesis of 1,8-Dioxo-octahydroxanthenes and Tetra-hydrobenzo[a] xanthene-11-ones over Poly(N,N'-dibromo-N-ethylnaphtyl-2,7-sulfonamide); J. Chin. Chem. Soc.; 2017, 64(9), 1088-1095.
- xxviii Nakhaei A.; Yadegarian, S.; Synthesis of tetrahydrobenzo[a]xanthene-11-one derivatives using ZrO<sub>2</sub>-SO<sub>3</sub>H as highly efficient recyclable nano-catalyst; J. Appl. Chem. Res.; 2017, 11(3), 72-83.
- xxix Sonei S.; Gholizadeh M.; Taghavi F.; Cu(II) anchored on modified magnetic nanoparticles: as a green and efficient recyclable nano catalyst for one pot synthesis of 12-aryl-8,9,10,12 tetrahydrobenzo[a] xanthene-11-one; Polycycl Aromat Comp.; 2020, 40(4), 1127-1142.
- xxx Rohaniyan M.; Davoodnia, A.; Beyramabadi S. A.; Khojastehnezhad A.; Phosphomolybdic acid supported on schiff base functionalized graphene oxide nanosheets: preparation, characterization, and first catalytic application in the multi-

component synthesis of tetrahydrobenzo[a]xanthene-11-ones; Appl Organometal Chem.; 2019, **33**(5), e4881.

- xxxi Salami M.; Ezabadi A.; Synthesis of the nano-magnetic ionic liquid based on caffeine and its catalytic application in the synthesis of xanthenes; Res Chem Intermed.; 2020, **46**, 4611-4626.
- xxxii Garlapati, K. K.; Babu S. S.; Srinivasu N.; Chavali T. M.; An efficient one-pot synthesis of tetrahydrobenzo xanthen-11-one derivatives catalyzed by  $P_2O_5$  under solvent free conditions; Asian J. Chem.; 2018, **30**(4), 804-806.
- xxxiii Ghasemzadeh M. A.; Ghaffarian F.; Preparation of core/shell/shell CoFe<sub>2</sub>O<sub>4</sub>/OCMC/Cu (BDC) nanostructure as a magnetically heterogeneous catalyst for the synthesis of substituted xanthenes, quinazolines and acridines under ultrasonic irradiation; Appl Organometal Chem.; 2020, **34**(5), e5580.
- xxxiv Nguyen H. T.; Le N. P.T.; Chau D. K. N.; Tran P. H.; New nano-Fe<sub>3</sub>O<sub>4</sub>-supported Lewis acidic ionic liquid as a highly effective and recyclable catalyst for the preparation of benzoxanthenes and pyrroles under solvent-free sonication; RSC Adv.; 2018, 8(62), 35681-35688.
- xxxv Mane P.; Shinde B.; Mundada P.; Gawade V.; Karale B.; Burungale A.; Sodium acetate/MWI: a green protocol for the synthesis of tetrahydrobenzo[α]xanthen-11-ones with biological screening; Res Chem Intermed.; 2020, 46, 231-241.
- xxxvi Fardooda S. T.; Ramazania A.; Moradniaa F.; Afsharia Z.; Ganjkhanlua S.; Zarea F.Y.; Green synthesis of ZnO nanoparticles via sol-gel method and investigation of its application in solvent-free synthesis of 12-aryl-tetrahydrobenzo[α]xanthene-11- one derivatives under microwave irradiation; Chem. Methodol.; 2019, **3**, 696-706.
- xxxvii Akbari A.; Hosseini-Nia A.; Biological evaluation and simple method for the synthesis of tetrahydrobenzo[a]xanthenes-11-one derivatives; J. Saudi Chem. Soc.; 2017, 21, S7
- xxxviii Korupolu R. B.; Maripi, S.; Madasu S.B.; Majji R.K.; Ganta R. K.; Chilla, P. N.; Nano nickel-cobalt ferrite catalyzed one pot synthesis of 14-Aryl-14H-dibenzo[a, j]xanthenes and 12-aryl-8, 9, 10, 12-tetrahydrobenzo[a]xanthene-11-one derivatives; Orient. J. Chem.; 2017, **33**(1), 122-133.
- xxxix Das B.; Laxminarayana K.; Krishnaiah M.; Srinivas Y.; An efficient and convenient protocol for the synthesis of novel 12-Aryl- or 12-Alkyl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-one derivatives; Synlett.; 2007, **20**, 3107-3112.
- xl Khurana J. M.;Magoo D.; pTSA-catalyzed one-pot synthesis of 12-aryl-8,9,10,12tetrahydrobenzo[a] xanthen-11-ones in ionic liquid and neat conditions; Tetrahedron Lett.; 2009, **50**(33), 4777-4780.
- xli Shitole N.V.; Sapkal S. B.; Shingate B. B.; Shingare M. S.; A simple and green synthesis of tetrahydrobenzo[ $\alpha$ ]-xanthen-11-one using PEG-400 as efficient and recyclable reaction media; Bull. Korean. Chem. Soc.; 2011, **32**(1), 35-36.
- xlii Soliman H. A.; Khatab T.K.; New approach for tetrachlorosilane promoted one-pot, condensation reaction for tetrahydrobenzo[a]xanthene-11-ones with docking validation as aurora kinase inhibitor; Silicon.; 2018, **10**, 229-233.
- xliii Habibi, D.; Kaamyabi S.; Hazarkhani H.; Fe<sub>3</sub>O<sub>4</sub> nanoparticles as an efficient and reusable catalyst for the solvent-free synthesis of 9,9-dimethyl-9,10-dihydro-8H-benzo-[a]xanthen-11(12H)-ones; Chin. J. Catal.; 2015, **36**(3), 362-366.
- xliv Vahdat S.; Khaksar S.; Polyvinylpolypyrrolidone supported triflic acid (PVPP.OTf); an efficient and recyclable heterogeneous catalyst for one-pot condensation of b-

naphthol, aldehydes, and cyclic 1,3-dicarbonyl compounds; Res. Chem. Intermed.; 2015, **41**, 4177-4186.

- xlv Shaabani A.; Mahyari M.; Hajishaabanha F.; The synthesis of xanthenes and benzoxanthenes on graphene oxide and sulfated graphene nanosheets in water; Res. Chem. Intermed.; 2014, **40**, 2799-2810.
- xlvi Aute, D.; Kshirsagar A.; Uphade B.; Gadhave A.; Aluminized polyborate-catalysed green and efficient synthesis of polyhydroquinolines under solvent-free conditions; Res. Chem. Intermed.; 2020, **46**, 3491-3508.
- xlvii Aute, D.; Kshirsagar A.; Uphade B.; Gadhave A.; Ultrasound assisted and aluminized polyborate prompted green and efficient one pot protocol for the synthesis of hexahydroquinolines; Polycycl Aromat Compd.; 2022, **42**(4), 1375-1390.
- xlviii Aute, D.; Kshirsagar A.; Uphade B.; Gadhave A.; An expedient and straightforward solvent-free synthesis of 1,8-dioxo-octahydroxanthenes using eco-friendly aluminized polyborate catalyst; J. Heterocycl. Chemi.; 2020, **57**(10), 3691-3702.
- xlix Aute, D.; Kshirsagar A.; Uphade B.; Gadhave A.; Sulfated polyborate as an ecocompatible solid acid catalyst for efficient and facile solvent-free synthesis of polyhydroquinolines; J. Chem. Sci.; 2020, **132**(147), 1-1
- 1 Aute, D.; Kshirsagar A.; Uphade B.; Gadhave A.; Aluminized polyborate-catalyzed environmentally benign solvent-free protocol for the synthesis of bis-coumarin derivatives; Indian J. Heterocycl. Chem.; 2020, **30**(4), 599-605.
- Ii Tambe A.; Dange, C.; Gavande, J.; Dhawale, R.; Kadnor, V.; Gadhave A.; Shirole G.; Novel pumice supported perchloric acid promoted protocol for the synthesis of tetrahydrobenzo[b]pyran via multi-component approach; Polycycl Aromat Compd.; 2024, 44(1), 591-606.
- lii Narsale, B. S.; Gadhave, A. G.; Raut K. S.; Thube D. R.; One pot approach of novel xanthan perchloric acid catalyst in synthesis of bis(indolyl)methane derivatives via greener perspective; Polycycl Aromat Compd.; 2023, **43**(7), 5826-5839.
- liii Khan T.; Siddiui Z. N.; Perchloric acid modified-cellulose: a versatile, novel and biodegradable heterogeneous solid acid catalyst for single pot synthesis of novel Bis-Pyran annulated heterocyclic scaffolds under solvent-free conditions; New. J. Chem.; 2014, **38**(10), 4847-4858.
- liv Siddiui Z. N.; Khan, T.; Unprecedented single-pot protocol for the synthesis of novel bis-3,4-dihydropyrimidin-2(1H)- ones using PEG-HClO<sub>4</sub> as a biodegradable, highly robust and reusable solid acid green catalyst under solvent-free conditions; RSC Adv.; 2014, **4**(5), 2526-2537.

Received on November 5, 2023.