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ABSTRACT: A sustainable route for one-pot synthesis of pyrano[2,3‑c]pyrazole derivatives 

using microwave have been used. This approach manifests several green chemistry features 

like use of operational simplicity, a short reaction time, and remarkable yields of the desired 

product. The current approach could be a beneficial green alternative for the synthesis of 

targeted molecules as an alternative to conventional methods 
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INTRODUCTION: 

Green chemistry is an effective tool in the quest of developing sustainable synthetic 

techniquesi. Microwave assisted synthesis is one of the technique. It can be included within the 

concept of green chemistry since it offers shorter reaction times, improved energy efficiency 

and offer higher yieldsii. Synthesis using microwave with proper control of temperature and 

power is more efficient than conventional heatingiii. By accelerating reactions, microwave 

assisted reactions have demonstrated as a reliable and effective method in synthetic organic 

chemistry.  

Heterocyclic compounds are pharmacologically active compounds. According to data, 

heterocycle is present in more than 85% of all biologically active chemical entitiesiv. 

Multicomponent reactions provide complex molecules by incorporating diverse moieties in 

single framework offering molecular diversityv. They have various benefits over conventional 

step synthesis in terms of the ease of purification, relatively mild reactions, short reaction times, 

atom-efficient synthesis of organic molecules, thereby saving energy and raw material 

consumption. As a result, multicomponent reactions aids both the economy and the 

environment, and is used to synthesize desired moiety with enhanced pharmacologically 

activity. 

2-amino-4H-chromenes are a significant class of heterocyclic compounds and have intrigued 

chemists owing to its diverse biological propertiesvi like antibacterialvii, antimicrobialviii, anti-

inflammatoryix, anti-tubercularx, anticancerxi. Pyrazolones are among the oldest synthetic drugs 

and have garnered prominence since 1883xii. It is a five membered lactum ring consisting of 
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one ketonic group and two nitrogens in its structure. It has wide range of biological activity 

like anti-microbialxiii, anti-depressantxiv, anti-oxidantxv, anti-tumorxvi, anti-tuberculosisxvii, anti-

Alzheimerxviii, anti-inflammatoryxix, anti-viralxx, etc.  

Pyrano[2,3‑c]pyrazolexxi-xxiii are reported using various catalystsxxiv-xxviii, ultrasound 

irradiations xxix, or under microwave irradiationsxxx. However, available method have certain 

drawbacks like prolonged reaction times, the use of toxic solvents, and lower yields. Solvent-

free approaches are among the most promising methods for green chemistry.  

In order to develop sustainable technique for the synthesis of biologically active heterocyclic 

scaffolds, we present here the synthesis of pyrano[2,3‑c]pyrazole derivatives using microwave 

under solvent free condition. 

 

EXPERIMENTAL: 

Materials and analytical methods 

All the chemicals were procured from Sigma Aldrich (India) and were used without additional 

purification. Merck silica gel 60 F254 plates were used for thin layer chromatography (TLC) 

to monitor the reaction. Melting points were obtained using open capillary tubes and were 

uncorrected. Perkin Elmer, Frontier equipment with ATR was used to record FTIR . 1H (300 

MHz) and 13C NMR (75 MHz) was recorded on Bruker AVANCE II using TMS as internal 

standard in DMSO-d6. AB SCIEX 3200 QTRAP mass spectrometer was used to obtain ESI 

mass spectra and elemental analysis was obtained on model EA300, Euro Vector, Italy. 

Procedure for the synthesis of 6-amino-3-methyl-aryl-1,4-dihydropyrano[2,3-c] pyrazole-

5- carbonitrile (4a-j) 

In a conical flask, the mixture of pyrazolone (1mmol), substituted aldehyde (1mmol) and 

malononitrile (1mmol), was irradiated using domestic microwave at 400 W for 5 mins. The 

progress of reaction was monitored using Thin Layer Chromatography (TLC). On completion 

of reaction, ice-cold water was added to dilute the solid mass. The crude reaction mass was 

extracted with ethyl acetate, solvent was removed under pressure and the product was purified 

by recrystallization using ethanol. 

6-amino-3-methyl-4-phenyl-1,4-dihydropyrano[2,3-c] pyrazole-5- carbonitrile (4a) 

Yield 95% (White solid); MP= 244 o Cxxxi.IR (υmax/cm-1): 3369 (NH2); 3164 (NH); 2191 (CN). 
1H NMR (300 MHz, DMSO) δ= 12.10 (s, 1H, NH), 7.32 (t, J = 7.3 Hz, 2H, Ar-H), 7.25 – 7.15 

(m, 3H, Ar-H), 6.88 (s, 2H, NH2), 4.59 (s, 1H, CH), 1.78 (s, 3H, CH3). 13C NMR (75 MHz, 

DMSO) δ= 160.83, 154.73, 144.41, 135.53, 128.40, 127.43, 126.69, 120.75, 97.60, 57.15, 

36.20 (CH), 9.70 (CH3). Elemental analysis for C14H12N4O: C, 66.65; H, 4.79; N, 22.21; 

found: C, 66.52; H, 4.65; N, 22.08. 

6-amino-3-methyl-4-(p-tolyl)-1,4-dihydropyrano[2,3-c] pyrazole-5- carbonitrile (4b) 

Yield 95% (White solid); MP= 196 o Cxxxi. IR (υmax/cm-1): 3406 (NH2); 3313 (NH); 2191 (CN). 
1H NMR (300 MHz, DMSO) δ= 12.08 (s, 1H, NH), 7.08 (dd, J = 22.3, 8.0 Hz, 4H, Ar- H), 

6.84 (s, 2H, NH2), 4.54 (s, 1H, CH), 2.27 (s, 3H, CH3), 1.78 (s, 3H, CH3).  13C NMR (75 MHz, 

DMSO) δ= 160.73, 154.72, 141.45, 135.67, 135.50, 128.95, 127.32, 120.77, 97.68, 57.34, 

35.81 (CH), 20.59 (CH3), 9.72 (CH3). Elemental analysis for C15H14N4O: C, 67.65; H, 5.30; 

N, 21.04; found: C, 67.52; H, 5.28; N, 21.00. 

6-amino-4-(2-methoxyphenyl)-3-methyl-1,4-dihydropyrano[2,3-c]pyrazole-5-

carbonitrile (4c) 

Yield 92% (White solid); MP= 251 o C xxxi. IR (υmax/cm-1): 3469 (NH2); 3306 (NH); 2198 (CN). 
1H NMR (300 MHz, DMSO) δ=11.95 (s, 1H, NH), 7.21 – 7.14 (m, 1H, Ar-H), 7.00 – 6.85 

(m, 3H, Ar-H), 6.67 (s, 2H, NH2), 4.98 (s, 1H, CH), 3.80 (s, 3H, OCH3), 1.80 (s, 3H, CH3). 13C 

NMR (75 MHz, DMSO) δ= 161.37, 156.24, 155.02, 134.93, 132.03, 128.53, 127.72, 120.72, 
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120.67, 111.00, 97.70, 95.51, 56.54, 55.42, 9.46 (CH3). Elemental analysis for C15H14N4O2: 

C, 63.82; H, 5.00; N, 19.85; found: C, 63.75; H, 4.84; N, 19.72. 

6-amino-4-(4-methoxyphenyl)-3-methyl-1,4-dihydropyrano[2,3-c]pyrazole-5-

carbonitrile (4d) 

Yield 97% (White solid); MP= 211 o C xxxi. IR (υmax/cm-1): 3482 (NH2); 3250 (NH); 2189 (CN). 
1H NMR (300 MHz, DMSO) δ= 12.09 (s, 1H, NH), 7.07 (d, J = 8.6 Hz, 2H, Ar-H), 6.85 (dd, 

J = 10.5, 7.5 Hz, 4H, Ar-H, NH2), 4.53 (s, 1H, CH), 3.72 (s, 3H, OCH3), 1.78 (s, 3H, CH3).  
13C NMR (75 MHz, DMSO) δ= 160.64, 157.92, 154.70, 136.42, 135.55, 128.45, 120.80, 

113.72, 97.84, 57.57, 54.95 (OCH3), 35.38 (CH), 9.69 (CH3). Elemental analysis for 

C15H14N4O2: C, 63.82; H, 5.00; N, 19.85; found: C, 63.70; H, 4.82; N, 19.71. 

6-amino-4-(3,4-dimethoxyphenyl)-3-methyl-1,4-dihydropyrano[2,3-c]pyrazole-5-

carbonitrile (4e) 

Yield 96% (White solid); MP= 193-195 ᵒC xxxii. IR (υmax/cm-1): 3372 (NH2); 3135 (NH); 2184 

(CN). 1H NMR (300 MHz, DMSO) δ= 12.08 (s, 1H, NH), 6.89 (d, J = 8.3 Hz, 1H, Ar-H), 

6.83 (s, 2H, NH2), 6.75 (d, J = 1.4 Hz, 1H, Ar-H), 6.68 (d, J = 8.2 Hz, 1H, Ar-H), 4.55 (s, 1H, 

CH), 3.72 (s, 3H, OCH3), 3.69 (s, 3H, OCH3), 1.82 (s, 3H, CH3). 13C NMR (75 MHz, DMSO) 

δ= 160.71, 154.69, 148.50, 147.52, 136.86, 135.59, 120.82, 119.44, 111.70, 111.16, 97.67, 

57.38, 55.43 (OCH3), 55.40 (OCH3), 35.79 (CH), 9.80 (CH3). Elemental analysis for 

C16H16N4O3: C, 61.53; H, 5.16; N, 17.94; found: C, 61.45; H, 5.11; N, 17.86. 

6-amino-3-methyl-4-(3,4,5-trimethoxyphenyl)-1,4-dihydropyrano[2,3-c]pyrazole-5-

carbonitrile (4f) 

Yield 97% (White solid); MP= 226 o C xxxi. IR (υmax/cm-1): 3477 (NH2); 3305 (NH); 2187 (CN).  
1H NMR (300 MHz, DMSO) δ= 12.09 (s, 1H, NH), 6.86 (s, 2H, NH2), 6.47 (s, 2H, Ar- H), 

4.58 (s, 1H, CH), 3.72 (s, 6H, 2 x OCH3), 3.64 (s, 3H, OCH3), 1.87 (s, 3H, CH3).  13C NMR 

(75 MHz, DMSO) δ= 160.94, 154.68, 152.76, 140.03, 136.16, 135.70, 120.80, 104.59, 97.29, 

59.92, 56.91 (OCH3), 55.80 (OCH3), 36.44 (CH), 9.89 (CH3). Elemental analysis for 

C17H18N4O4: C, 59.64; H, 5.30; N, 16.37; found: C, 59.56; H, 5.22; N, 16.28. 

6-amino-4-(4-chlorophenyl)-3-methyl-1,4-dihydropyrano[2,3-c] pyrazole-5-carbonitrile 

(4g) 

Yield 98% (White solid); MP= 233 o C xxxi. IR (υmax/cm-1): 3406 (NH2); 3306 (NH); 2186 (CN). 
1H NMR (300 MHz, DMSO) δ= 12.15 (s, 1H, NH), 7.38 (d, J = 8.4 Hz, 2H, Ar-H), 7.19 (d, J 

= 8.4 Hz, 2H, Ar-H), 6.94 (s, 2H, NH2), 4.63 (s, 1H, CH), 1.79 (s, 3H, CH3).  13C NMR (75 

MHz, DMSO) δ= 160.87, 154.67, 143.43, 135.66, 131.20, 129.32, 128.42, 120.61, 97.16, 

56.74, 35.52 (CH), 9.69 (CH3). Elemental analysis for C14H11ClN4O: C, 58.65; H, 3.87; N, 

19.54; found: C, 58.52; H, 3.74; N, 19.47. 

6-amino-3-methyl-4-(3-nitrophenyl)-1,4-dihydropyrano[2,3-c] pyrazole- 5-carbonitrile 

(4h) 

Yield 98% (Yellow solid); MP= 232 ᵒCxxxi. IR (υmax/cm-1): 3472 (NH2); 3287 (NH); 2193 

(CN). 1H NMR (300 MHz, DMSO) δ= 12.21 (s, 1H, NH), 8.12 (dt, J = 6.9, 2.2 Hz, 1H, Ar-

H), 8.02 (s, 1H, Ar-H), 7.69 – 7.61 (m, 2H, Ar-H), 7.06 (s, 2H, NH2), 4.88 (s, 1H, CH), 1.81 

(s, 3H, CH3).  13C NMR (75 MHz, DMSO) δ= 161.11, 154.66, 147.85, 146.79, 135.86, 134.35, 

130.21, 121.95, 121.81, 120.47, 96.63, 56.11, 35.61 (CH), 9.71 (CH3). Elemental analysis for 

C14H11N5O3: C, 56.56; H, 3.73; N, 23.56; found: C, 56.44; H, 3.68; N, 23.47. 

6-amino-4-(3-hydroxyphenyl)-3-methyl-1,4-dihydropyrano[2,3-c]pyrazole-5-

carbonitrile (4i) 

Yield 95% (White solid); MP= 240-241 ᵒC. IR (υmax/cm-1): 3489 (NH2); 3350 (NH); 2199 

(CN). 1H NMR (300 MHz, DMSO) δ= 12.10 (s, 1H, NH), 9.35 (s, 1H, OH), 7.10 (t, J = 7.8 

Hz, 1H, Ar-H), 6.85 (s, 2H, NH2), 6.62 (dd, J = 6.9, 4.0 Hz, 2H, Ar-H), 6.55 (s, 1H, Ar-H), 

4.49 (s, 1H, -CH), 1.82 (s, 3H, CH3). 13C NMR (75 MHz, DMSO) δ= 160.81, 157.37, 154.74, 
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145.90, 135.62, 129.26, 120.79, 118.19, 114.11, 113.84, 97.67, 57.33, 36.14 (CH), 9.71 (CH3). 

Elemental analysis C14H12N4O2: C, 62.68; H, 4.51; N, 20.88; found: C, 62.52; H, 4.36; N, 

20.82. 

6-amino-4-(4-hydroxyphenyl)-3-methyl-1,4-dihydropyrano[2,3-c]pyrazole-5-

carbonitrile (4j) 

Yield 965% (White solid); MP= 224 ᵒCxxxi. IR (υmax/cm-1): 3468 (NH2); 3372 (NH); 2199 

(CN). 1H NMR (300 MHz, DMSO) δ= 12.06 (s, 1H, NH), 9.30 (s, 1H, OH), 6.96 (d, J = 8.4 

Hz, 2H, Ar-H), 6.79 (s, 2H, NH2), 6.69 (d, J = 8.4 Hz, 2H, Ar-H), 4.47 (s, 1H, CH), 1.79 (s, 

3H, CH3). 13C NMR (75 MHz, DMSO) δ= 160.59, 155.97, 154.71, 135.51, 134.72, 128.40, 

120.87, 115.08, 98.03, 57.79, 35.44 (CH), 9.71 (CH3). Elemental analysis C14H12N4O2: C, 

62.68; H, 4.51; N, 20.88; found: C, 62.59; H, 4.32; N, 20.81. 

 

RESULT AND DISCUSSION: 

The general path for the synthesis of 6-amino-3-methyl-aryl-1,4-dihydropyrano[2,3-c] 

pyrazole-5- carbonitrile 4(a-j) is depicted in Scheme 1. The compounds were synthesized by 

condensation of pyrazolone (1), substituted aldehyde (2) and malononitrile (3) using domestic 

microwave at 400 W for 5 mins. 

 
Scheme 1. Synthesis of pyrano[2,3-c]pyrazole derivatives. 

 

The synthesized compounds were characterized using IR, 1H NMR and the characterization 

data of synthesized compounds 4(a–j) are presented in experimental part. In IR spectrum, 

stretching for NH2 was observed around 3334-3489 cm−1, a band for NH-stretching was 

detected in the range of 3135-3372 cm−1 and stretching for CN group was observed around 

2184-2199 cm−1. In 1H NMR spectrum, a peak around δ = 11.95–12.21 ppm corresponds to 

NH proton while a peak around δ = 6.67-7.06 ppm denotes NH2 protons. A peak around δ = 

4.47-4.88 ppm corresponds to methine proton (CH) and peak around 1.78-1.87 denotes CH3. 

In 13C NMR, peak around 35.38-36.44 denotes methine carbon (CH) and peak around 9.46-

9.89 corresponds to CH3 carbon. The spectral results were in agreement with those reported in 

the literature. The experimental composition obtained from C, H, N elemental analysis for the 

synthesized compounds was in good agreement with the theoretical composition. Hereby, 

confirming that the desired compounds were synthesized. 

Optimization of reaction condition: 

Initially, we selected pyrazolone (1), benzaldehyde (2a) and malononitrile (3) as model reaction 

for optimization of time of irradiation and power of microwave. The results are summarized in 

Table 1. The investigation revealed that reaction efficiency was highly dependent on 
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microwave power (Table 1, entries 1-3), highest yield was obtained at 400 W. Further we 

compared the irradiation time of 5, 6, 7 min at 400 W, corresponding yields were 92%, 94%, 

95% (Table 1, entries 2, 4 and 5). Hence, further increasing time for 6 mins and 7 mins didn’t 

give significant increase in the yield (Table 1, entries 4 and 5). Hence, 5 mins was considered 

optimal time for the reaction to complete and 400 W was considered optimal power. 

 

Table 1. Optimization condition for synthesis of pyrano[2,3-c]pyrazole derivatives. 

 
Entry Power (W) Time (min) Yield (%)a 

1 200 5 70 

2 400 5 92 

3 420 5 88 

4 400 6 94 

5 400 7 95 

Reaction conditions: pyrazolone (1 mmol), benzaldehyde (1 mmol), malononitrile (1 mmol) 
aIsolated yields 

  

CONCLUSION: 

In conclusion, the utilization of microwave-assisted synthesis of the pyrano[2,3‑c]pyrazole 

derivatives has proven to be a highly efficient and innovative method. It offered several 

advantages, such as ease of operation, short reaction times, and good yields. It’s a promising 

choice owing to its eco-friendly nature. 
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