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Abstract: A simple yet robust set-up for the efficient desulfurization of a series of thioureas is 

presented, which generates the corresponding tetrazole and guanidine derivatives in moderate 

to high yields. This approach enabled the controlled and safe formation of the final products. 

In addition, we have explored the library of target products using this method. 

 

Introduction 

In recent years, desulfurization has been established on a multi-million-ton scale in down-

stream oil processing towards the production of gasoline, kerosene and Diesel fuel using 

heterogeneous catalysts nickel, copper, cobalt, molybdenum, and tungsten etc. However, the 

true potential of this reaction in the lab scale total synthesis of natural products, biologically 

active compounds, or new materials has not been exploited yet. 

Now a days heterocyclic skeletons are generally commercially available drug molecules 

(Figure 1).i They are the main building blocks in naturally occurring organic compounds.ii 

Generally heterocyclic scaffolds have been found to bearing a wide range of biological 

capabilities, including anti-inflammatory,iii anti-malarial,iv anti-tubercular,v anti-cancer,vi anti-

asthmatic,vii anti-histaminic,viii anti-hypertensive,ix anti-depressant,x anti-microbial,xi anti-

rheumatic,xii anti-diabetic,xiii anti-Alzheimer’s, anti-Parkinson’s, anti-Huntington’s disease,xiv 

and many more activitiesxv,xvi. For the synthesis of diverse heterocyclic entities, the screening 

of suitable catalysts plays an important role.xvii In this regard, environmentally benign, non-

volatile, non-flammable, non-corrosive, low-cost, commercially available and chemical 

stability Nickel catalyst is chosen for the development of method for the synthesis of tetrazoles 

and guanidine’s through desulphurization.  
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Figure 1: Examples of biologically important heterocyclic compounds 

 

In recent decades tetrazole moiety compounds have been developed from starting precursors, 

for example, addition of NaNO2 to aminoguanidine,xviii addition of NaN3 to carbodimides or 

cyanamides,xix reaction of amines with a leaving group in tetrazoles 5-position,xx nucleophilic  

substitution by N3
- of (a) chlorine in α-chloroformamidinesxxi and (b) sulfur from thioureas in 

the presence of mercuryxxii or lead saltsxviiic or iodine.xxiii Furthermore, tetrazoles have also been 

prepared from the reaction between corresponding nitriles and NaN3 via [3+2] cycloaddition 

using Zn (II) saltsxiv and ZnO nanocrystal.xxv  Recently, TBAFxxvi and Copper catalystxxvii were 

also used for the synthesis of 5-substituted 1H-tetrazoles from the reaction between nitriles and 

trimethylsilyl azide. Some other reports have also been developed in recently.xxviii However, 

these methods use either toxic reagents or harsh reaction conditions such as high temperature 

and lack of regioselectivity.xxix 

The synthesis of acylguanidines as potential bioactive molecules and useful building blocks for 

the synthesis of natural and therapeutically useful products has generated a major stimulus in 

academia and industry as well.xxx The main synthetic access to these molecular targets includes 

the guanylation of N-acylthioureas. Beside the displacement of the sulfur in the presence of 

ethyl-3-aminopropyl carbodiimide hydrochloride (EDCI)xxxi or Mukaiyama's reagentxxxii the 

most common desulphurizing agents is HgCl2.xxxiii It has been extensively used in the synthesis 

of guanidines. However, the stoichiometric utilization of mercury salts largely precludes the 

extended use for the synthesis of pharmaceutical relevant compounds due to their toxicity. 

Recently Prasad and co-workers have developed the synthesis of Guanidines and Tetrazoles 

using Cu catalystxxxiv and stoichiometric amount of Iodine.xxxv Furthermore, recently 

Guanidines were reported with Iron catalyst,xxxvi however, they require moderate temperature, 

used high equivalent amount of base and stoichiometric amount of catalyst. In order to 

overcome the above said drawbacks and we would like to develop method for the synthesis of 

Guanidines and Tetrazoles in the presence of Nickel catalyst via desulphurisation/nucleophilic 

substitution/electro cyclization under mild reaction conditions. 

 

Results and Discussion: 

N-2-Bromophenyl N1-benzoyl thiourea was prepared from benzoyl chloride by reacting 

with potassium thiocyanate and followed by nucleophilic addition with 2-bromo aniline 

in the presence of acetone under reflux conditions (Scheme 1).    
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Scheme 1: The synthetic route for the synthesis of N-2-bromophenyl N1-benzoyl 

thiourea 

 

Initially we started the optimization with N-2-Bromophenyl-N1-Benzoyl thiourea as model 

substrate using different solvents, bases and nickel sources at room temperature. We examined 

various solvents such as n-Hexane, n-Heptane, Toluene, THF, Dioxane, Acetone, DCM, 

CHCl3, MeOH, DMSO, DMF and H2O (Table 1, entries 1-12), and DMF was found to be the 

best solvent for this transformation. The conversion rate of 1a was 100%, however, 10% 

product was unidentified impurity existed. The control experiment is conformed that no target 

product was formed in the absence of solvent (Table 1, entry 13). Later base optimization was 

conduced and all inorganic, organic base has produced target product in good yield (Table 2, 

entries 1-5), however, no reaction was proceeded in the absence of base (Table 2, entry 6). In 

order to effective soluability of NaN3 and NaOH, water (0.5 mL) was added to the reaction 

mixture. All Nickel salts has shown same activity to wards the afford target product (Tabel 3, 

entries 1-4). Later the reaction was performed using 50 mol% catalyst and it gave target product 

in quantitative yield (Table 3, entry 5). In contrast,  the yield of the final product was 

dramatically decreased using 25 mol% catalyst (Table 3, entry 6). Other trial like increasing 

temperature to 50 °C to provide target prodct in good yield within 10 min (Table 3, entry 7). 

The reaction was conducted in the absence of catalyst and no final product was observed (Table 

3, entry 8) and the starting material is recovered intact. 

 

Table 1: Solvent optimization for the preparation of Benzoylaryl-5-aminotetrazole 
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aReaction conditions: N-Benzoyl-N’-iodophenyl thiourea (1 mmol), Fe2(SO4)3.3H2O (1 mmol), 

Et3N (1 mmol), NaN3 (1 mmol), rt, 60 min. Solvent (3 ml). b Isolated yield. 

 

The effort of reaction optimization revealed that the best condition for the conversion of N-

Benzoyl-N’-iodophenyl thiourea into Benzoyl-5-arylamino tetrazole is 50 mol% NiSO4.6H2O, 

NaN3, and Et3N in the presence of  DMF at room temperature for 10 minutes. 

Subsequently, different substituted Benzoyl-5-arylamino tetrazole were investigated under 

standardized conditions to exhibit the variability of this method. The substrates bearing electron 

donating and electron withdrawing substituents on the aryl rings and alkyl substrates were 

examined under the standard reaction 68-92% yield. The aryl ring having electron donating 

substituents like 4-Et, 4-Me and 4-OMe readily proceed the reaction to afford the target 

products    

Table 2: Base optimization for the preparation of Benzoylaryl-5-aminotetrazolea 
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Reaction conditions: N-Benzoyl-N’-iodophenyl thiourea (1 mmol), Fe2(SO4)3.3H2O (1 mmol), 

Base (1 mmol), NaN3 (1 mmol), rt, 60 min. DMF (3 ml). b Isolated yield. 

Table 3: Catalyst optimization for the preparation of Benzoylaryl-5-aminotetrazolea 
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a Reaction conditions: N-Benzoyl-N’-iodophenyl thiourea (1 mmol), Iron source (1 mmol), 

Et3N (1 mmol), NaN3 (1 mmol), rt, 60 min. DMF (3 ml). b Isolated yield. c Catalyst (50 mol %) 

was used. d Catalyst (25 mol %) was used. e Reaction was carried out at 50 °C. 

 

2b-d in good yield. In contrast the phenyl ring holds strong electron withdrawing group like 4-

CN underwent the reaction to produce final product 2h in lower yield. On the other hand, 

phenyl group bearing weak electron withdrawing groups such as 4-F and 4-Cl carried out the 

reaction under standardized conditions to provide the corresponding desired products 2f in 78% 

yield and 2g in 83% yield. Furthermore, phenyl ring consists of 2,4-DiMe gave the respective 

tetrazole product 2e in 82% yield. The same optimized reaction conditions are applied for the 

construction of disubstituted guanidines and they gave the corresponding desired products (3b-

i) in moderate to good yield. 

 
Scheme 2: Substrate scope for the synthesis of Aroyltetrazoles 

 

Based on experimental evidence and literature reports proposed mechanism is shown in 

below scheme 4. Sulphur of thiourea may coordinate with Nickel (II) species (could be 

formed from Ni (III) salt)xxxvii to provide intermediate complex I. It undergoes 

desulphurization (NiS was formed as by-product and an extra sulphur might have 

converted into as polysulfide)xxxviii and nucleophilic substitution with NaN3 to afford the 
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intermediate III via intermediates complex II. Electrocyclization of III afforded the target 

product tetrazole. On the other hand, desulphurizationxxxix of intermediate II and followed by 

nucleophilic substitution with ammonia to afford the final product Guanidine. Still other 

mechanistic studies like conformation of NiS and others are examined in our Laboratory.   

 

 
Scheme 3: Substrate scope for the synthesis of Aroylguanidines 

 

 
Scheme 4: Proposed Mechanism. 

 

 

Conclusions  

In conclusion, we have presented a new and environmentally benign method for the synthesis 

of aroylguanidines and aroylaryl tetrazoles using Iron source under mild reaction conditions. 

Compared to other reported methods using HgCl2 or Bi(NO3)3.5H2O the new method 

distinguishes itself by milder reaction conditions and shorter reaction times. Furthermore, the 

yields and the spectrum of accessible tetrazoles and guanidines are comparable or superior to 

the above mentioned methods. Further investigations concerning the optimization of the 

reported reaction conditions, the scope of the reaction, mechanistic studies to enlighten the role 
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of iron catalyst and applications towards target-orientated synthesis are currently underway in 

our laboratory and will be reported in the due course 
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