Graphical Abstract

Paper-1

Heterocyclic Letters 11: iss.-3 (2021), 145-156

Efficient synthesis of cyclic enamines from morpholine and cycloalkanones catalyzed by zeolite H-Y

Yasmine Rahma Hachemi**, Nabila Bouchiba¹, Mohammed Hamadouche¹*

¹ Laboratoire de Chimie Fine
² Laboratoire de Chimie des Matériaux
¹,² Département de Chimie, Faculté des Sciences Exactes et Appliquées, Université Oran I, BP 1524 El M’naouer, Oran 31000, Algérie.
**E-mail: hamadouchemed@yahoo.fr
yasmine.h31@gmail.com

Design and synthesis of a new epoxide-steroid carboxamide derivative

Figueroa-Valverde Lauro¹*, Rosas-Nexticapa Marcela², López-Ramos Maria¹*, Díaz-Cedillo Francisco³, Rosas-Nexticapa Marcela² Mateu-Armad Maria Virginia², Alvarez-Ramirez Ma. Magdalena², Lopez-Gutierrez Tomas¹, Cauich-Carrillo Regina¹

Laboratory of Pharmaco-Chemistry, Faculty of Chemical Biological Sciences, University Autonomous of Campeche, Av. Agustín Melgar s/n, Col Buenavista C.P. 24039 Campeche, Camp., México.
Email: lfiguero@uacam.mx

Synthesis of an epoxide-steroid carboxamide derivative from estradiol using some chemical strategies. The chemical structure was evaluated through both ¹H NMR and ¹³C NMR spectroscopic analysis.
Improving the practical ability of undergraduate applied chemistry students through the measurement of polysaccharide content in oilfield chemicals

Sanbao Donga,b, Jie Zhanga, Cheng Chaoa, Weichao Wua,b, Gang Chena,b,*

a Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi’an Petroleum University, Xi’an, 710065, Shaanxi, China

b State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety and Environmental Technology, Beijing, 102206, Beijing, China

*Corresponding author Email: gangchen@xsyu.edu.cn

The reaction between polysaccharide and sulfuric acid produces the furfural molecules, which then react with the phenol molecules. The complex molecules with light yellow color are produced through the above reactions as presented.

Room temperature, green and efficient synthesis of 4,4′-(arylmethylene)bis(1H-pyrazol-5-ols)

Department of Chemistry,

* Corresponding author. E-mail address: rupnarbd11@gmail.com

An eco-friendly and efficient pseudo three component method for the synthesis of 4,4′-(arylmethylene)bis(1H-pyrazol-5-ols) has been accomplished by tandem Knoevenagel–Michael reaction of various aromatic aldehydes with 5-methyl-2-phenyl- 2,4-dihydro-3H-pyrazol-3-one using inexpensive ammonium chloride catalyst in H\textsubscript{2}O:EtOH at room temperature.
Synthesis of heterocyclic ligands: synthesis, characterization and antimicrobial activity

Ajay M. Patil1*, Chandrashekhar G. Devkate2 and Sunil R. Mirgane3

1*Department of Chemistry, Pratishthan College Paithan, Aurangabad-431107, [M.S.]-India
2Dept. of Chem., Ind. Arts, Com. and Sci. Col., Sillod, Aurangabad-431112, INDIA [M.S.]-India
3Department of Chemistry, J. E. S. College, Jalna-431203, INDIA [M.S.]-India
E-mail authors: patilam4@gmail.com

A heterocyclic ligand prepared from 1,3,4-thiadiazole moieties in alcoholic medium. Synthesized heterocyclic ligand is characterized quantitatively and qualitatively by using elemental analysis, UV–Vis, FT-IR spectroscopy, mass spectroscopy, 1H NMR & 13C-NMR, and molar conductance measurement. The preliminary in vitro antibacterial and antifungal activity showed that heterocyclic ligand show the moderate activity against tested bacterial Strains S. aureus and B. subtilis and fungal strains of F. Oxysporum and A. Niger using Kirby-Bauer disc diffusion method.

A heterocyclic ligand prepared from 1,3,4-thiadiazole moieties in alcoholic medium. Synthesized heterocyclic ligand is characterized quantitatively and qualitatively by using elemental analysis, UV–Vis, FT-IR spectroscopy, mass spectroscopy, 1H NMR & 13C-NMR, and molar conductance measurement. The preliminary in vitro antibacterial and antifungal activity showed that heterocyclic ligand show the moderate activity against tested bacterial Strains S. aureus and B. subtilis and fungal strains of F. Oxysporum and A. Niger using Kirby-Bauer disc diffusion method.

Synthesis and antidiabetic activity of thiazolidinone–thiophene conjugates

Nikitha Alisha Gaga, B.C. Revanasiddappa*

*Department of Pharmaceutical Chemistry, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Mangalore-575018, (Karnataka) India
Email: revan@nitte.edu.in

The title compounds 5-aryl-2-(phenylamino)-5-(thiophen-3-ylmethylene)thiazol-4(5H)-ones (3a-i) were synthesized by reacting with 2-thiophene carbaldehyde (I) and 2-(arylamino)-thiazol-4-one (2a-i) in alcohol and sodium acetate medium. The new compounds were established on the basis of spectral data. In-Vitro antidiabetic activity was carried out by alpha amylase and alpha glucosidase assay methods. Some of the tested compounds showed good antidiabetic activity.
Synthesis, characterization and biological screening of mixed ligand complexes derived from oximes of 2-acetylfuran and 2-acetylthiophene using transition metals

Deepankar Sharma1 and Purnima Nag1,*

1Department of Chemistry, Jaipur National University, Jaipur, 302017, Rajasthan, India
*Email: purnima_nag007@yahoo.com

Present work deals with synthesis, characterization and biological screening of some mixed ligand transition metal complexes derived from 2-Acetylfuran and 2-Acetylthiophene using transition metal viz. Zn(II), Cu(II), Co(II), Ni(II) and Mn(II). The synthesized complexes have been characterized on the basis of spectral techniques such as IR, 1H-NMR and elemental analysis. The biological screening performed on derived complexes reflected that all these complexes show quite appreciable activity against the pathogens Bacillus subtilis, Escherichia coli, Pseudomonas diminuta, Staphylococcus aureus and Candida albicans.

Figure 1(a & b). Antibacterial activity of Mixed Ligand metal complexes (Y-axis signifies –log MIC data in μg/ml)

Figure 2. Anticandidal activity of [Ni(C12H14N2O3S)Cl2] (PC: Positive Control; NC: Negative Control; Conc. 0.5X: 5mg/ml; Conc. 1X: 10mg/ml)
A New Heterogeneous Catalyst Synthesis using Triethylamine As Template

Krishnaveni.M.*, and Chellapandian Kannanb**

*Department of chemistry, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli 627 012, Tamilnadu, India.
**Department of chemistry, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli 627 012, Tamilnadu, India.
*Email: chellapandiankannan@gmail.com

Room temperature synthesis of mesoporous aluminophosphate (MAP) using triethylamine as a template by the simple method without an autoclave. Texture, crystallinity, and thermal stability is verified by physicochemical characterization.

Green and efficient, one-pot syntheses of 2-(1H-benzo[d]imidazol-2-yl)-N-(pyridin-4-yl)benzamide

Ganapathi Velupula*a,b, T. Ravi Prasadc, Krishna Reddy Vallurub, Sreedhar Maroju*

a. Department of Chemistry, Rayalaseema university, Kurnool, Andhrapradesh; India.
b. GVK Biosciences PVT Ltd., Hyderabad, India.
*Email: velupulaganapathi@gmail.com

Green and efficient, one-pot three component syntheses of 2-(1H-benzo[d]imidazol-2-yl)-N-(pyridin-4-yl)benzamides have been developed by combining benzene-1,2-diamine with diethyl phthalate & pyridin-4-amine in the presence of phosphoric acid in water at 95-100 °C. These reactions provide excellent yields, involve easy workup and use water as solvent which are the merits of this preparation.
Investigation on design, green and conventional synthesis, characterization, electrochemical and biological studies of some new azomethines and their vanadium (V) complexes

Arghya De, Sumit Srivastava, Ayantika De, Renu Rathore and Ritu Tomar*

*a, Department of Chemistry, Bhupal Noble's University, Udaipur, 313001, India
b Department of Chemistry, University of Rajasthan, Jaipur, 302004, India
c Department of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144001, India

Synthesis of some new Vanadium (V) complexes of biologically potent (N=O and N=S) donor azomethines by classical thermal and microwave-irradiation techniques and characterized by the elemental analysis, IR, UV and EPR spectral and X-ray powder diffraction studies.

Where: R: OH3C & Cl
And X: O & S
Paper-11

Heterocyclic Letters 11: iss.-2 (2021), 231-236

236 An efficient three-component one-pot synthesis of pyrimidobenzimidazole derivative

Goda Pankaja Kumara, Thuraka Sekhara, Pinnu Thrivenia*, Annavarapu Venkateswarlua, Peduri Suresh Reddyb

aDepartment of Chemistry, Vikrama Simhapuri University, Nellore-524320, India.
bShodhana laboratories limited, Jeedimetla, Hyderabad-500 055, India
Email: pthriveni.vsu@gmail.com

A simple, clean and convenient one pot method has been developed for the synthesis of pyrimido[1,2-a]benzimidazole derivatives by the multicomponent reaction of cyclic ketone (1) aminobenzimidazole (2) and malononitrile (3) in the presence of ammonia as a mild, cheap, efficient, commercially available, environmentally benign, non-toxic base in aqueous ethanol medium. The simple work-up procedure and good to very good yield in short time are some of the important features of this protocol. The chemical structures of the synthesized compounds were characterized by IR, 1H NMR, 13C NMR and mass spectral analysis.

\begin{center}
\begin{tikzpicture}
\node at (0,0) {\textbf{1(a-c) + R}_{1,2,3} + \textbf{3}}; \\
\node at (0,-2) {\textbf{1}}; \\
\node at (2,-2) {\textbf{1b}}; \\
\node at (4,-2) {\textbf{1c}}; \\
\node at (0,-4) {\textbf{2(a-b)}}; \\
\node at (2,-4) {\textbf{2}}; \\
\node at (4,-4) {\textbf{2}}; \\
\draw[dashed] (0,-2) -- (0,-4); \\
\draw[dashed] (2,-2) -- (2,-4); \\
\draw[dashed] (4,-2) -- (4,-4); \\
\end{tikzpicture}
\end{center}

Paper-12

Heterocyclic Letters 11: iss.-2 (2021), 237-242

Preparation and characterization of organic nanoparticles of novel heterocyclic compounds

Tarun Patel1, Jayesh Patel2 and Purvesh Shah13

1Department of Chemistry, Shri M. M Patel Institute of Science & Research Gandhinagar
2Department of Chemistry, M.B.Patel Science College,Anand
13Department of Chemistry, K.K.Shah Jarodwala Maninagar Science College, Ahmedabad, *Email: purvesh23184@gmail.com

A novel heterocyclic compound, 4-((1H-naphtho[1,8-de][1,2,3]triazin-1-yl)sulfonyl)-N-(1-(5-phenyl-1,3,4-oxidiazol-2-yl)prop-1-en-2-yl)aniline(NTOD) has been designed and synthesized. Colloidal spherical and rod like shape of nanoparticles in aqueous media have been synthesized using reprecipitation method without using any surfactant. The optical properties of the aggregation of nanoparticles was characterized by microscopic characterization showed the size, shape of the nanoparticles.
Zinc oxide Catalyzed, Environmentally Benign Protocol for the synthesis of substituted carboxylic acid

Majid Shaikh*, Mujahed Shaikh**, Devendra Wagareb, Sayyad Sultan Kasim*

*a Maulana Azad College, Aurangabad 431001 Maharashtra, India
*b Department of Chemistry, Vivekanand College, Aurangabad (M.S.), India
*Email Id (Corresponding author): 1) sayyadsultankasim@gmail.com
2) majid.orchid@rediffmail.com

Carboxylic acid act as a versatile precursor to synthesize biologically valuable molecule like amide, acid chloride and many more. Hence, we have developed convenient method to synthesized substituted carboxylic acid. The previous synthetic method found limitations regarding the use of hazardous solvent, tedious work-up, slow and moderate product yields. To over come, these lacunas herein we have developed a facile and highly efficient synthetic protocol for the synthesis of carboxylic acids from the reaction of substituted aldehydes and hydrogen peroxide (70%) with zinc oxide (10% mol) as a catalyst and in onion extract. Reported method is better substitute for the existing previous methods because it has many advantages such as easy work-up, reduces the reaction time in just 1-2 hours with excellent yield and most important the Zinc oxide easily removed with filtration.

\[
\text{CHO} + \text{ZnO} \xrightarrow{\text{HO-OH}} \text{HO-}\]

An Easy, Efficient Synthesis and Antimicrobial Activity of 5-Aryl-1’-phenyl-3’-(pyridin-3-yl)-3,4-dihydro-1’H,2H-3,4’-bipyrazoles

Krishna Thotla and Ch. Krishna Reddy*

Department of Chemistry, Osmania University, Hyderabad, 500 007, Telangana, India.

An easy, efficient Michael addition reaction condition developed for a novel series pyridinyl-bipyrazole derivative using chalcone derivatives and hydrazine hydrate in the presence of acetic acid as catalyst. The screening result of antimicrobial activity of the title compounds showed moderate to good results compared to their standards.

12 examples
Synthesis of thiazole derivatives containing indole moiety bearing -4-oxazetidinone

S. Murali Krishna, Venugopal Mandla,

PSC&KVSC Govt College Nandyal Kurnool(DT)-518502
Dr. APJ Abdulkalam, IIT-ONGOLE
Rajiv Gandhi University of Knowledge Technologies-AP
Biological E.Ltd company ,shameerpet,Hyd
Email ID:-muralisphd@gmail.com

Schiff base synthesis of thiazole derivatives containing Indole moiety bearing 4-oxazetidine ring includes the condensation of (E)-5-((1H-indol-1-yl)methyl)-N-ethylidene-1,3,4-thiadiazol-2-amine with chloroethylacetate in presence of TEA/DIOXANE to obtain1-(5-((1H-indol-1-yl)methyl)-1,3,4-thiadiazol-2-yl)-3-chloro-4-methylazetidin-2-one, this reaction was subjected to schiff base reaction. The structure of these newly synthesized compounds were characterised by 1H NMR,13CNMR ,Mass ,IR, and elemental analysis.

![Reaction Scheme](image)

Synthesis and docking studies of 2-(3-bromophenyl)-7-hydroxy pyrazolo [1,5-a]pyrimidine-6-carbonitrile

Thirupathaiah T*, Sujatha P†, Laxinamrayana E* and Thirumala Chary M**

*Jawaharlal Nehru Technological University Hyderabad, Kakatpally, Hyderabad-500 085 Telangana -India
†Kakatiya University, Hanamkonda, Warangal-506009 Telangana India
‡ Sreenidhi Institute of Science and Technology (Autonomous), Ghatkesar, Hyderabad-501 301 Telangana, India
Email: mtcharya@yahoo.com

![Reaction Scheme](image)
Synthesis, characterization, microbial evaluation of mixed ligand complexes derived from hydrazones of cyclohexanone and benzophenone using transition metal ions

Deepankar Sharma* and Purnima Nag**

*Department of Chemistry, Jaipur National University, Jaipur, 302017, Rajasthan, India
*Email: purnima_nag007@yahoo.com

The chemical interaction of 2,4-dinitrophenylhydrazones of Cyclohexanone and Benzophenone with chlorides of transition metals i.e.; Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) resulted in mixed ligand complexes of the type \([\text{M(C}_3\text{H}_2\text{N}_8\text{O}_8)(\text{H}_2\text{O})_2\text{Cl}_2}\]. The hydrazones were prepared using green synthetic route by avoiding conc. \(\text{H}_2\text{SO}_4\). Novel mixed ligand complexes have been analyzed, characterized and compared with parent ligands on the basis of chemical analysis and spectral studies. The antimicrobial activities carried out on bacterial strains *Escherichia coli*, *Bacillus subtilis*, *Staphylococcus aureus* and fungal strain *Candida albicans* showed the appreciable activity of all these complexes against these strains.

Figure 1. Antimicrobial activities of the synthesized mixed ligand complexes

Figure 2. Probable coordination for the synthesized mixed ligand complexes
Synthesis of Pharmacologically Important Analogues of Natural Tryptanthrins

Vishwa Deepak Tripathi*, Kumod Kumar Jha#, Nausheen Amber#

*Department of Chemistry, M. K. College, Lalit Narayan Mithila University, Darbhanga, Bihar, 846003, India,
University Department of Chemistry, Lalit Narayan Mithila University, Darbhanga, Bihar, 846003, India.

Eco-friendly synthesis of Imidazo[4,5-b]pyridine containig-1,3,5-triazinane-2-thiones

Laxminarayana E1, Ramesh D2, Sujatha I3 and Mohan G4

1Sreenidhi Institute of Science and Technology (Autonomous) Yammampet, Ghatkesar, Hyderabad-501301, Telangana
2Department of Chemistry and Pharmaceutical Sciences, Mahatma Gandhi University, Nalgonda-508544, India.
3 Department of Chemistry,Kakatiya University, Hanamkonda, Warangal-506009
4Chaitanya Deemed to be University Kishanpura, Hanamkonda, Telangana 506001
Email: elxnkits@yahoo.co.in
Thiazole derivatives containing compounds as curative agents for Tuberculosis: A Review

Prashant P. Mogle, Priya D. Gavhane and Bhaskar S. Dawane

*Organic Research laboratory, School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded-431606 (MS) India

Email-bhaskardawane@rediffmail.com

This review investigates the recent developments in the synthesis of thiazole derivatives & evaluates their biological importance towards Tuberculosis disease.